Open Access
Issue
E3S Web of Conf.
Volume 559, 2024
2024 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2024)
Article Number 04022
Number of page(s) 10
Section Structural Engineering & Concrete Technology
DOI https://doi.org/10.1051/e3sconf/202455904022
Published online 08 August 2024
  1. Addison-Atkinson, W., Chen, A. S., Memon, F. A., & Chang, T. J. (2022). Modelling urban sewer flooding and quantitative microbial risk assessment: A critical review. In Journal of Flood Risk Management (Vol. 15, Issue 4). John Wiley and Sons Inc. https://doi.org/10.1111/jfr3.12844 [CrossRef] [Google Scholar]
  2. Ahmad, H. F., Alam, A., Bhat, M. S., & Ahmad, S. (2016). One Dimensional Steady Flow Analysis Using HECRAS – A case of River Jhelum, Jammu and Kashmir. European Scientific Journal, ESJ, 12(32), 340. https://doi.org/10.19044/esj.2016.v12n32p340 [CrossRef] [Google Scholar]
  3. Anju, B., Drissia, T. K., & Nowshaja, P. T. (2021). One dimensional hydrodynamic modelling of pamba river for identifying the flood vulnerability. IOP Conference Series: Materials Science and Engineering, 1114(1), 012023. https://doi.org/10.1088/1757-899x/1114/1/012023 [CrossRef] [Google Scholar]
  4. Arash, A. M., & Yasi, M. (2023). The assessment for selection and correction of RS-based DEMs and 1D and 2D HEC-RAS models for flood mapping in different river types. Journal of Flood Risk Management, 16(1). https://doi.org/10.1111/jfr3.12871 [CrossRef] [Google Scholar]
  5. Bates, P. D., Marks, K. J., & Horritt, M. S. (2003). Optimal use of high-resolution topographic data in flood inundation models. Hydrological Processes, 17(3), 537–557. https://doi.org/10.1002/hyp.1113 [CrossRef] [Google Scholar]
  6. Cheng, T., Xu, Z., Hong, S., & Song, S. (2017). Flood Risk Zoning by Using 2D Hydrodynamic Modeling: A Case Study in Jinan City. Mathematical Problems in Engineering, 2017. https://doi.org/10.1155/2017/5659197 [Google Scholar]
  7. HEC-RAS River Analysis System HEC-RAS User’s Manual. (2023). [Google Scholar]
  8. Jung, Y., Kim, D., Kim, D., Kim, M., & Lee, S. O. (2014). Simplified flood inundation mapping based on flood elevation-discharge rating curves using satellite images in gauged watersheds. Water (Switzerland), 6(5), 1280–1299. https://doi.org/10.3390/w6051280 [Google Scholar]
  9. Li, S., Sun, D., Goldberg, M., & Stefanidis, A. (2013). Derivation of 30-m-resolution water maps from TERRA/MODIS and SRTM. Remote Sensing of Environment, 134, 417–430. https://doi.org/10.1016/j.rse.2013.03.015 [CrossRef] [Google Scholar]
  10. Mehta, D. J., Eslamian, S., & Prajapati, K. (2022a). Flood modelling for a data-scare semi-arid region using 1-D hydrodynamic model: a case study of Navsari Region. Modeling Earth Systems and Environment, 8(2), 2675–2685. https://doi.org/10.1007/s40808-021-01259-5 [CrossRef] [Google Scholar]
  11. Mehta, D. J., Eslamian, S., & Prajapati, K. (2022b). Flood modelling for a data-scare semi-arid region using 1-D hydrodynamic model: a case study of Navsari Region. Modeling Earth Systems and Environment, 8(2), 2675–2685. https://doi.org/10.1007/s40808-021-01259-5 [CrossRef] [Google Scholar]
  12. Mehta, D. J., & Yadav, S. M. (2020). Hydrodynamic Simulation of River Ambica for Riverbed Assessment: A Case Study of Navsari Region. Lecture Notes in Civil Engineering, 39, 127–140. https://doi.org/10.1007/978-981-13-8181-2_10 [CrossRef] [Google Scholar]
  13. Mondal, I., Bandyopadhyay, J., & Paul, A. K. (2016). Estimation of hydrodynamic pattern change of Ichamati River using HEC RAS model, West Bengal, India. Modeling Earth Systems and Environment, 2(3). https://doi.org/10.1007/s40808-016-0138-2 [Google Scholar]
  14. Ogania, J. L., Puno, G. R., Alivio, M. B. T., & Taylaran, J. M. G. (2019). Effect of digital elevation model’s resolution in producing flood hazard maps. Global Journal of Environmental Science and Management, 5(1), 95–106. https://doi.org/10.22034/gjesm.2019.01.08 [Google Scholar]
  15. Patel, D. P., Ramirez, J. A., Srivastava, P. K., Bray, M., & Han, D. (2017). Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: a case application of the new HEC-RAS 5. Natural Hazards, 89(1), 93–130. https://doi.org/10.1007/s11069-017-2956-6 [CrossRef] [Google Scholar]
  16. Patel, K. B., & Yadav, S. M. (2019). One Dimensional Unsteady Flow Analysis using HEC-RAS Modelling Appoach for Flood in Navsari City. www.undp.org [Google Scholar]
  17. Pathan, A. I., & Agnihotri, P. G. (2021). Application of new HEC-RAS version 5 for 1D hydrodynamic flood modeling with special reference through geospatial techniques: a case of River Purna at Navsari, Gujarat, India. Modeling Earth Systems and Environment, 7(2), 1133–1144. https://doi.org/10.1007/s40808-020-00961-0 [CrossRef] [Google Scholar]
  18. Puno, G. R., Puno, R. C. C., & Maghuyop, I. V. (2022). Flood hazard simulation and mapping using digital elevation models with different resolutions. Global Journal of Environmental Science and Management, 8(3), 339–352. https://doi.org/10.22034/gjesm.2022.03.04 [Google Scholar]
  19. Vashist, K., & Singh, K. K. (2022). Improvement in 1D hydrodynamic modeling using MIKE Hydro. Modeling Earth Systems and Environment, 8(4), 5653–5663. https://doi.org/10.1007/s40808-022-01437-z [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.