Open Access
Issue
E3S Web of Conf.
Volume 562, 2024
BuildSim Nordic 2024
Article Number 04002
Number of page(s) 11
Section Demand-Side Flexibility
DOI https://doi.org/10.1051/e3sconf/202456204002
Published online 07 August 2024
  1. D. Koolen, M. De Felice, S. Busch, Flexibility requirements and the role of storage in future European power systems. EUR 31239 EN. Publications Office of the European Union (2023). [Google Scholar]
  2. ESO: Electricity System Operator for Great Britain, Beyond 2030 – A national blueprint for a decarbonized electricity system in Great Britain (2024). [Google Scholar]
  3. S.Ø. Jensen (ed.), A. Marszal-Pomianowska (ed.), J. Parker (ed.), H. Johra, A. Knotzer, J. Salom, T. Péan, E. Mlecnik, H. Kazmi, R. Pernet, K. Klein, L. Frison, P. Engelmann, L. Aelenei, R.A. Lopes, D. Aelenei, R.G. Junker, H. Madsen, A.Q. Santos, B.N. Jørgensen, Z. Ma, Principles of Energy Flexible Buildings: Energy in Buildings and Communities Programme Annex 67 Energy Flexible Buildings. International Energy Agency (2019). [Google Scholar]
  4. H. Johra, What is building energy flexibility – demand response? DCE Lecture Notes No. 81. Department of the Built Environment, Aalborg University (2023). https://doi.org/10.54337/aau518320296 [Google Scholar]
  5. K. Johansen, H. Johra, A niche technique overlooked in the Danish district heating sector? Exploring socio-technical perspectives of short-term thermal energy storage for building energy flexibility. Energy 256, 124075 (2022). https://doi.org/10.1016/j.energy.2022.124075 [CrossRef] [Google Scholar]
  6. A. Satchwell, M.A. Piette, A. Khandekar, J. Granderson, N.M. Frick, R. Hledik, A. Faruqui, L. Lam, S. Ross, J. Cohen, K. Wang, A national roadmap for grid-interactive efficient buildings. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA (2021). [Google Scholar]
  7. Australian Energy Market Operator: AEMO, Australian Integrated System Plan 2022 (2022). [Google Scholar]
  8. International Energy Agency, IEA Tracking Report Demand Response, 2022 (2022). [Google Scholar]
  9. H. Johra, P. Heiselberg, Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review. Renewable and Sustainable Energy Reviews 69, 19-32 (2017). https://doi.org/10.1016/j.rser.2016.11.145 [CrossRef] [Google Scholar]
  10. J. Le Dréau, P. Heiselberg, Energy flexibility of residential buildings using short term heat storage in the thermal mass. Energy 111, 991-1002 (2016). https://doi.org/10.1016/j.energy.2016.05.076 [CrossRef] [Google Scholar]
  11. H. Johra, P. Heiselberg, J. Le Dréau, Influence of envelope, structural thermal mass and indoor content on the building heating energy flexibility. Energy and Buildings 183, 325-339 (2019). https://doi.org/10.1016/j.enbuild.2018.11.012 [CrossRef] [Google Scholar]
  12. K. Hedegaard, B.V. Mathiesen, H. Lund, P. Heiselberg, Wind power integration using individual heat pumps – Analysis of different heat storage options. Energy 47, 284-293 (2012). [CrossRef] [Google Scholar]
  13. Le Dréau, J., Lopes, A.R., O'Connell, S., Finn, D., Hu, M., Queiroz, H., Alexander, D., Satchwell, A., Österreicher, D., Polly, B., Arteconi, A., de Andrade Pereira, F., Hall, M., Kırant-Mitić, T., Cai, H., Johra, H., Kazmi, H., Li, R., Liu, A., Nespoli, L., Saeed, M.H., Developing energy flexibility in clusters of buildings: a critical analysis of barriers from planning to operation. Energy and Buildings 300, 113608 (2023). https://doi.org/10.1016/j.enbuild.2023.113608 [CrossRef] [Google Scholar]
  14. Intelligent Energy Europe, IEE Project TABULA (2009 2012): Typology Approach for Building Stock Energy Assessment (2012). https://episcope.eu/iee-project/tabula/ [Google Scholar]
  15. StatBank Denmark, BYGB40 (2023). https://www.statbank.dk [Google Scholar]
  16. K.B. Wittchen, J. Kragh, Danish building typologies: Participation in the TABULA project. SBi 2012:1. Danish Building Research Institute (SBi), Denmark (2012). [Google Scholar]
  17. J. Kragh, K.B. Wittchen, Danske bygningers energibehov i 2050. SBi 2010:56. Danish Building Research Institute (SBi), Denmark (2010). [Google Scholar]
  18. International Organisation for Standardisation, Thermal performance of building components – dynamic thermal characteristics – calculation methods (ISO 13786:2007) (2007). [Google Scholar]
  19. K. Jessen, District heating in the Danish energy system. Danish District Heating Association (2015). [Google Scholar]
  20. Eurostat, UNECE, EU transport in figures Statistical Pocketbook 2020. European Commission (2020). [Google Scholar]
  21. Danish Ministry of Climate, Energy and Utilities, Regulation and planning of district heating in Denmark (2015). [Google Scholar]
  22. Danish Energy Agency, Data, tables, statistics and maps, Energy Statistics 2021 (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.