Open Access
Issue
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
Article Number 01005
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/202456701005
Published online 09 September 2024
  1. State research and production enterprise “State information geological fund of Ukraine”. Retrieved 27 January 2017. Retrieved from http://geoinf.kiev.ua [Google Scholar]
  2. Simonenko, V.I. (2004). Razrabotka energosberegayushchey tekhnologii dobychi skal’nykh nerudnykh poleznykh iskopaemykh Ukrainy. PhD Thesis. Dnipropetrovsk, Ukraina: NHU. [Google Scholar]
  3. Chernyaеv, O.V. (2017). Systematization of the hard rock non-metallic mineral deposits for improvement of their mining technologies. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 11–17. http://ir.nmu.org.ua/handle/123456789/150684 [Google Scholar]
  4. Pivnyak, G.G., Gumenik, I.L., Drebenshtedt, C., & Panasenko, A.I., (2011). Nauchnye osnovy ratsyonalnogo prirodopolzovaniya pri otkrytoy razrabotke mestorozhdeniy. Dnepropetrovsk: NHU. https://library.bntu.by/en/node/708 [Google Scholar]
  5. Symonenko, V.I. (2011). Tekhnolohichni osnovy ekolohoi ener-hozberihaiuchoho vyrobnytstva pry vydobutku tverdoi nerudnoi syrovyny v mezhakh sanitarno-zakhysnykh zon. Zvit #DR 011U000532. [Google Scholar]
  6. Cherniaiev, O.V. (2021). Obhruntuvannia hlybyny rozrobky nerudnykh rodovyshch skelnykh korysnykh kopalyn z vnutrishnim vidvaloutvorenniam. PhD Thesis. Dnipro, Ukraina: NTU “Dniprovska politekhnika”. [Google Scholar]
  7. Dychkovskyi, R., Saik, P., Sala, D., & Cabana, E.C. (2024). The current state of the non-ore mineral deposits mining in the concept of the Ukraine reconstruction in the post-war period. Mineral Economics, 1–11. https://doi.org/10.1007/s13563-024-00436-z [Google Scholar]
  8. Symonenko, V.I. (2013). Rozrobka tekhnolohichnykh, upravlinskykh rishen, normatyvnoi dokumentatsii, systemy ekolohichnoho monitorynhu shchodo pryrodookhoronnoi diialnosti hirnychykh pidpryiemstv. Zvit DR 0112U000875. [Google Scholar]
  9. Cherniaiev, O., Pavlychenko, A., Romanenko, O., & Vovk, Y. (2021). Substantiation of resource-saving technology when mining the deposits for the production of crushed-stone products. Mining of Mineral Deposits, 15(4), 99–107. https://doi.org/10.33271/mining15.04.099 [CrossRef] [Google Scholar]
  10. Sobko, B.Yu., Lozhnikov, O.V., Chebanov, M.O., & Kriachek, V.P. (2024). Establishing the influence of the quarry depth on the indicators of cyclic flow technology during the development of non-ore deposits Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 5–12. https://doi.org/10.33271/nvngu/2024-1/005 [CrossRef] [Google Scholar]
  11. Vladyko, O., Maltsev, D., Sala, D., Cichoń, D., Buketov, V., & Dychkovskyi, R. (2022). Simulation of leaching processes of polymetallic ores using the similarity theorem. Rudarsko Geolosko Naftni Zbornik, 37(5), 169–180. https://doi.org/10.17794/rgn.2022.5.14 [CrossRef] [Google Scholar]
  12. Symonenko, V. Cherniaiev, O., & Hrytsenko, L., (2016). Organization of non-metallic deposits development by steep excavation layers. Mining of Mineral Deposits, 10(4), 68–73. http://dspace.nbuv.gov.ua/handle/123456789/133576 [CrossRef] [Google Scholar]
  13. Saik, P., Cherniaiev, O., Anisimov, O., Dychkovskyi, R., & Adamchuk, A. (2023). Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods. Mining of Mineral Deposits, 17(4), 91–102. https://doi.org/10.33271/mining17.04.091 [CrossRef] [Google Scholar]
  14. Sobko, B., Lozhnikov, O., Levytskyi, V., & Skyba, G. (2019). Conceptual development of the transition from drill and blast excavation to non-blasting methods for the preparation of mined rock in surface mining. Rudarsko-Geolosko-Naftni Zbornik, 34(3) 21–28, https://doi.org/10.17794/rgn.2019.3.3 [CrossRef] [Google Scholar]
  15. Сhebanov, M.O., Pcholkin, H.D., Makurin, A.A., & Lozhnikov, O.V. (2023). Substantiation of the technological parameters of bucket-wheel excavator forward trench when mining titanium deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 5–11. https://doi.org/10.33271/nvngu/2023-6/005 [CrossRef] [Google Scholar]
  16. Bondarenko, A.O., Shustov, O.O., Pavlychenko, A.V., & Adamchuk, A.A. (2023). Substantiation of technological resource-saving conditions for the use of equipment in the sand deposit mining. IOP Conference Series: Earth and Environmental Science, (1269), 012024. https://doi.org/10.1088/1755-1315/1269/1/012024 [CrossRef] [Google Scholar]
  17. Petlovanyi, M., Saik, P., Lozynskyi, V., Sai, K., & Cherniaiev, O. (2023). Substantiating and assessing the stability of the underground system parameters for the sawn limestone mining: Case study of the Nova Odesa deposit, Ukraine. Inżynieria Mineralna, 1(51), 79–89. https://doi.org/10.29227/IM-2023-01-10 [Google Scholar]
  18. Strilets, О., Pcholkin, G., & Oliferuk, V. (2015). Monitoring of mass blasting seismic impact on residencial buildings and constructions. New Developments in Mining Engineering 2015: Theretical and Practical Solutions of Mineral Resources Mining, 533–535. https://doi.org/10.1201/b19901-91 [CrossRef] [Google Scholar]
  19. Hussan, B., Lozynska, M.I., Takhanov, D.K., Oralbay, A.O., & Kuzmin, S.L. (2021). Assessing the quality of drilling-and-blasting operations at the open pit limiting contour. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 42–48. https://doi.org/10.33271/nvngu/2021-6/042 [CrossRef] [Google Scholar]
  20. Symonenko, V.I., Haddad, J.S., Cherniaiev, O.V., Rastsvietaiev, V.O., & Al-Rawashdeh, M.O. (2019). Substantiating Systems of Open-Pit Mining Equipment in the Context of Specific Cost. Journal of The Institution of Engineers (India): Series D, (100), 301–305. http://doi:10.1007/s40033-019-00185-2 [CrossRef] [Google Scholar]
  21. Chebanov, M.O., Pcholkin, H.D., Makurin, A.A., & Lozhnikov, O.V. (2023). Substantiation of the technological parameters of bucket-wheel excavator forward trench when mining titanium deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 5–11. https://doi.org/10.33271/nvngu/2023-6/005 [CrossRef] [Google Scholar]
  22. Mnzool, M., Almujibah, H., Bakri, M., Gaafar, A., Elhassan, A.A.M., & Gomaa, E. (2024). Optimization of cycle time for loading and hauling trucks in open-pit mining. Mining of Mineral Deposits, 18(1), 18–26. https://doi.org/10.33271/mining18.01.018 [CrossRef] [Google Scholar]
  23. Prokopenko, V.I., Cherep, A.Yu., & Pilova, D.P. (2021). Justification of methodical approach to mining and processing efficiency evaluation. Gornyi Zhurnal, (8), 39–44. https://doi.org/10.17580/gzh.2021.08.07 [CrossRef] [Google Scholar]
  24. Kassymkanova, K.K., Rysbekov, K.B., Nurpeissova, M.B., Kyrgizbayeva, G.M., Amralinova, B.B., Soltabaeva, S.T., Salkynov, A., & Jangulova, G. (2023). Geophysical studies of rock distortion in mining operations in complex geological conditions. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (48), 57–62. https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-57-2023 [CrossRef] [Google Scholar]
  25. Sobko, B.Yu., Lozhnikov, O.V., Chebanov, M.O., & Kardash, V.A. (2021). Substantiating rational schedule to load trucks using draglines while mining a pit of Motronivskyi MPP. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 23–28. https://doi.org/10.33271/nvngu/2021-4/023 [CrossRef] [Google Scholar]
  26. Pilov, P.I., & Dreshpak, A.S. (2017). Mathematical model for predicting limestone enrichment indicators. International Journal of Energy for a Clean Environment, 18(4), 319–333. https://doi.org/10.1615/InterJEnerCleanEnv.2018021634 [CrossRef] [Google Scholar]
  27. Symonenko, V.I. (2016). Rozrobka ekolohobezpechnykh tekhnolohii vedennia hirnychykh robit z urakhuvanniam potreb v likvidatsii ta konservatsii hirnychodobuvnykh pidpryiemstv. Zvit DR 0115U002301. [Google Scholar]
  28. Malanchuk, Z.R. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 11–18. https://doi.org/10.29202/nvngu/2019-6/2 [Google Scholar]
  29. Symonenko, V.I. et al. (2022). Tekhnolohiia ekolohobezpechnoi vidkrytoi rozrobky nerudnykh rodovyshch tverdykh korysnykh kopalyn. Dnipro, Ukraina: Zhurfond, 365 p. [Google Scholar]
  30. Chepushtanova, T.A., Yulussov, S.B., Baigenzhenov, O.S., Khabiyev, A.T., Merkibayev, Y.S., & Mishra, B. (2024). Review of methods for processing ore vanadium-containing raw materials. Engineering Journal of Satbayev University, 146(1), 15–22. https://doi.org/10.51301/ejsu.2024.i1.03 [Google Scholar]
  31. Ishkov, V., Kozii, Y., Chernobuk, O., Dreshpak, O., & Buketov, V. (2024). Territorial distribution of germanium in the c5 coal seam on the territory of the Pavlohradskaamine. E3S Web of Conferences, (526), 01017. https://doi.org/10.1051/e3sconf/202452601017 [CrossRef] [EDP Sciences] [Google Scholar]
  32. Bazaluk, O., Kuchyn O., Saik, P., Soltabayeva, S., Brui, H., Lozynskyi, V., & Cherniaiev, O. (2023). Impact of ground surface subsidence caused by underground coal mining on natural gas pipeline. Scientific Reports, 13(1), 79–89. https://www.nature.com/articles/s41598-023-46814-5. [CrossRef] [PubMed] [Google Scholar]
  33. Takhanov, D., Balpanova, M., Kenetayeva, A., Rabatuly, M., Zholdybayeva, G., & Usupayev, S. (2023). Risk assessments for rockfalls taking into account the structure of the rock mass. E3S Web of Conferences, (44), 04012. https://doi.org/10.1051/e3sconf/202344304012 [CrossRef] [EDP Sciences] [Google Scholar]
  34. Golinko, V.I., Cheberiachko, S.I., Naumov, M.M., & Cheberiachko, Yu.I. (2014). Comparative study of respirator protective efficiency in laboratory and in production environment. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 99–105. [Google Scholar]
  35. Symonenko, V.I., Pavlychenko, A.V., Cherniaiev, O.V., & Hrytsenko, L.S. (2015). Ecology saving technology of mineral deposit mining in the conditions of the sanitary protection zone. Mining of Mineral Deposits, 9(4), 469–476. https://doi.org/10.15407/mining09.04.469 [CrossRef] [Google Scholar]
  36. Cheberiachko, S., Cheberiachko, Y., Deryugin, O., Kravchenko, B., Nehrii, T., Serhii, N., & Zolotarova, O. (2023). Increasing the insulation properties of filter respirators to protect miners’ respiratory organs from dust. Rudarsko Geolosko Naftni Zbornik, 38(4), 27–40. https://doi.org/10.17794/rgn.2023.4.3 [CrossRef] [Google Scholar]
  37. Sdvyzhkova, O., Moldabayev, S., Babets, D., Bascetin, A., Asylkhanova, G., Nurmanova, A., & Prykhodko, V. (2024). Numerical modelling of the pit wall stability while optimizing its boundaries to ensure the ore mining completeness. Mining of Mineral Deposits, 18(2), 1–10. https://doi.org/10.33271/mining18.02.001 [CrossRef] [Google Scholar]
  38. Moldabayeva, G.Z., Efendiyev, G.M., Kozlovskiy, A.L., Buktukov, N.S., & Abbasova, S.V. (2023). Modeling and adoption of technological solutions in order to enhance the effectiveness of measures to limit water inflows into oil wells under conditions of uncertainty. ChemEngineering, 7(5), 89. https://doi.org/10.3390/chemengineering7050089 [CrossRef] [Google Scholar]
  39. Portnov, V.S., Yurov, V.M., & Mausymbaeva, A.D. (2018). Influence of Surface Properties of Minerals on Rebellious Ore Disintegration. Journal of Mining Science, (54), 681–689. [CrossRef] [Google Scholar]
  40. Yelemessov, K., Nauryzbayeva, D., Bortebayev, S., Baskanbayeva, D., & Chubenko, V. (2021). Efficiency of application of fiber concrete as a material for manufacturing bodies of centrifugal pumps. E3S Web of Conferences, (280), 07007. https://doi.org/10.1051/e3sconf/202128007007 [CrossRef] [EDP Sciences] [Google Scholar]
  41. Buktukov, N.S., Gumennikov, Y.S., Moldabayeva, G.Z., Buktukov, B.Z., & Yesbergenova, E.S. (2024). New solutions for mechanized small diameter shaft sinking for residual oil production. SOCAR Proceedings, (1), 81–86. https://doi.org/10.5510/OGP20240100944 [CrossRef] [Google Scholar]
  42. Lozhnikov, O., & Adamova, V. (2023). Methodology for determining the scope of reclamation works when forming recreational zone in the quarry residual space. IOP Conference Series: Earth and Environmental Science, (1348), 012043. https://doi.org/10.1088/1755-1315/1348/1/012043 [Google Scholar]
  43. Bazaluk, O., Anisimov, O., Saik, P, Lozynskyi, V., Akimov, O., & Hrytsenko, L. (2023). Determining the Safe Distance for Mining Equipment Operation When Forming an Internal Dump in a Deep Open Pit. Sustainability, 15(7), 5912. https://doi.org/10.3390/su15075912 [CrossRef] [Google Scholar]
  44. Simonenko, V., Pavlychenko, A., & Cherniaiev, О. (2018). Assessment of the ecological efficiency of the open development of non-metallic deposits of useful minerals. Technology audit and production reserves. Ecology and Environmental Technology, 5/3(43), 11–17. https://doi.org/10.15587/2312-8372.2018.145602 [Google Scholar]
  45. Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.G., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2016). Revisiting the Underground Gasification of Coal Reserves from Contiguous Seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60–66. [Google Scholar]
  46. Bazaluk, O., Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., & Cabana, E. (2021). Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process. Energies, 14(14), 4369. https://doi.org/10.3390/en14144369. [CrossRef] [Google Scholar]
  47. SOU-N MPP 73.020-078-1:2007. (2007). Normy tekhnolohichnoho proiektuvannia hirnychodobuvnykh pidpryiemstv iz vidkrytym sposobom rozrobky rodovyshch korysnykh kopalyn». Nastanova ministerstva promyslovoi polityky Ukrainy. Kyiv, Ukraina: Ministerstvo promyslovoi polityky Ukrainy. [Google Scholar]
  48. NPAOP 0.00-1.24-10. (2010). Pravyla okhorony pratsi pid chas rozrobky rodovyshch korysnykh kopalyn vidkrytym sposobom. Kyiv, Ukraina: Derzhavnyi komitet Ukrainy z promyslovoi bezpeky. [Google Scholar]
  49. Haddad, J.S., Denyshchenko, O., Kolosov, D., Rastsvietaiev, V., & Cherniaiev, O. (2021). Reducing Wear of the Mine Ropeways Components Basing Upon the Studies of Their Contact Interaction. Archives of Mining Sciences, 66(4), 579–594. https://doi.org/10.24425/ams.2021.139598 [Google Scholar]
  50. Dreshpak, N.S., & Dreshpak, O.S. (2023). Parameterization of the statistical model for electrical energy efficiency control. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 96–102. https://doi.org/10.33271/nvngu/2023-4/096 [CrossRef] [Google Scholar]
  51. Portnov, V., Kamarov, R., Mausymbaeva, A., & Yurov, V. (2014). Link of specific electric resistance with qualitative and strength characteristics of ores. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 65–70. https://doi.org/10.1201/b17547-13 [Google Scholar]
  52. Anisimov, O., Bariatska, N., & Cherniaiev, O. (2024). Strategic planning of open pit mining operations using the Micromine beyond Optimiser. IOP Conference Series: Earth and Environmental Science, 1348(1), 012005. https://iopscience.iop.org/article/10.1088/1755-1315/1348/1/012005 [CrossRef] [Google Scholar]
  53. Cherniaiev, O., Anisimov, O., Saik, P., & Akimov, O. (2024). Theoretical substantiation of water inflow into the mined-out space of quarries mining hard-rock building materials IOP Conference Series: Earth and Environmental Science, 1319(1), 012002. https://doi.org/10.1088/1755-1315/1319/1/012004 [CrossRef] [Google Scholar]
  54. Semenenko, Y., Medvedieva, O., Medyanyk, V., & Buketov, V. (2023). Study of parameters and regimes of pressureless flow in a channel with overboard overflow. IOP Conference Series: Earth and Environmental Science, (1156), 012030. https://doi.org/10.1088/1755-1315/1156/1/012030 [CrossRef] [Google Scholar]
  55. Sarybayev, O., Nurpeisova, M., Kyrgizbayeva, G., & Toleyov, B. (2015). Rock mass assessment for man-made disaster risk management. New Developments in Mining Engineering 2015: Theretical and Practical Solutions of Mineral Resources Mining, 403–409. https://doi.org/10.1201/b19901-70 [CrossRef] [Google Scholar]
  56. Medianyk, V., & Cherniaiev, O. (2018). Technological aspects of technogenic disturbance liquidation in the areas of coal-gas deposits development. E3S Web of Conferences, (60), 00037. https://doi.org/10.1051/e3sconf/20186000037 [CrossRef] [EDP Sciences] [Google Scholar]
  57. Saik, P., Cherniaiev, O., Anisimov, O., & Rysbekov, K. (2023). Substantiation of the direction for mining operations that develop under conditions of shear processes caused by hydrostatic pressure. Sustainability, 15(22), 15690. https://doi.org/10.3390/su152215690 [CrossRef] [Google Scholar]
  58. Skidin, I.E., Vodennikova, O.S., Saithareiev, L.N., Baboshko, D.Y., & Barmenshinova, M.B. (2023). Technology of forming a wear-resistant thermite alloy layer based on the Fe-Cr-C system by self-propagating high-temperature synthesis. IOP Conference Series: Earth and Environmental Science, 1254(1), 012008. https://doi.org/10.1088/1755-1315/1254/1/012008 [CrossRef] [Google Scholar]
  59. Bondarenko, V., Kovalevska, I., & Dychkovskiy, R. (2010). Features of selectivity process of borehole underground coal gasification. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 219–222. https://doi.org/10.1201/b11329-36 [Google Scholar]
  60. Mambetaliyeva, A.R., Mamyrbayeva, K.K., Turysbekov, D.K., Dauletbakov, T.S., & Barmenshinova, M.B. (2022). Investigation of the process of sulfiding of gold-arsenic containing ores and concentrates. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 51–56. https://doi.org/10.33271/nvngu/2022-3/051 [CrossRef] [Google Scholar]
  61. Cherniaiev, O., Anisimov, O., Dreshpak, O., & Borodina, N. (2024). Substantiation the safety open pit wall parameters in the conditions of a reduced protective zone near State critical infrastructure. E3S Web of Conferences, (526), 01014. https://doi.org/10.1051/e3sconf/202452601014 [CrossRef] [EDP Sciences] [Google Scholar]
  62. Semenenko, Ye., Medvedieva, O., Medianyk, V., Bluyss, B., & Khaminich, O. (2023). Research into the pressureless flow in hydrotechnical systems at mining enterprises. Mining of Mineral Deposits, 17(1), 28–34. https://doi.org/10.33271/mining17.01.028 [CrossRef] [Google Scholar]
  63. Pavlychenko, A., & Kovalenko, A. (2013). The investigation of rock dumps influence to the levels of heavy metals contamination of soil. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 237–238. https://doi.org/10.1201/b16354-43 [CrossRef] [Google Scholar]
  64. Medvedieva, O., Semenenko, Y., Blyuss, B., & Skosyriev, V. (2022). Justification of the hydro-mechanical systems operating modes, used for restoring accumulation capacity of tailings storages. IOP Conference Series: Earth and Environmental Science, (970), 012043. https://doi.org/10.1088/1755-1315/970/1/012043 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.