Open Access
Issue
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
Article Number 01004
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202456701004
Published online 09 September 2024
  1. Vervoort, A. (1991). Study of shield support characteristics and their influence on the roof behaviour in coal longwalls. Mining Science and Technology, 13(3), 315–322. https://doi.org/10.1016/0167-9031(91)90571-s [CrossRef] [Google Scholar]
  2. Dychkovskiy, R., & Bondarenko, V. (2006). Methods of Extraction of Thin and Rather Thin Coal Seams in the Works of the Scientists of the Underground Mining Faculty (National Mining University). International Mining Forum 2006, New Technological Solutions in Underground Mining, 21–25. https://doi.org/10.1201/noe0415401173.ch3 [CrossRef] [Google Scholar]
  3. Kononenko, M., Khomenko, O., Kosenko, A., Myronova, I., Bash, V., & Pazynich, Y. (2024). Raises advance using emulsion explosives. E3S Web of Conferences, (526), 01010. https://doi.org/10.1051/e3sconf/202452601010 [CrossRef] [EDP Sciences] [Google Scholar]
  4. Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3.9 [CrossRef] [Google Scholar]
  5. Vu, T.T (2022). Solutions to prevent face spall and roof falling in fully mechanized longwall at underground mines, Vietnam. Mining of Mineral Deposits, 16(1), 127–134. https://doi.org/10.33271/mining16.01.127 [CrossRef] [Google Scholar]
  6. Kopacz, M. (2015). The impact assessment of quality parameters of coal and waste rock on the value of mining investment projects – hard coal deposits. Gospodarka Surowcami Mineralnymi, 31(4), 161–188. https://doi.org/10.1515/gospo-2015-0037 [CrossRef] [Google Scholar]
  7. Dyczko, A. (2023). Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture. Journal of Sustainable Mining, 22(1), 2–19. https://doi.org/10.46873/2300-3960.1371 [CrossRef] [Google Scholar]
  8. Galica, D. (2023). Cyfrowy model geologiczny złoża jako narzędzie wspomagania decyzji w działalności kopalni węgla kamiennego. Kraków: Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, 203 s. [Google Scholar]
  9. Malinowski, L. (2019). Influence of chosen technical constraints on stability of 3D geological model-based schedule in a complex longwall operation. E3S Web of Conferences, (123), 01024. https://doi.org/10.1051/e3sconf/201912301024 [CrossRef] [EDP Sciences] [Google Scholar]
  10. Dyczko, A., Galica, D., & Sypniowski, S. (2012). Deposit model as a first step in mining production scheduling. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 231–247. https://doi.org/10.1201/b13157-39 [Google Scholar]
  11. Kentucky Case Report. (2019). Gutter installer dies after falling from roof. Retrieved from https://www.cdc.gov/niosh/face/pdfs/19ky034.pdf [Google Scholar]
  12. Khuangan, N., Asainov, S., Khojayev, T., Azimbayeva, Z., Atageldiyev, K., Nurshaiykova, G., & Akylbayeva, A. (2024). Predicting the magnitude of technogenic earthquakes during underground mining of the Zhezkazgan ore field. Mining of Mineral Deposits, 18(1), 45–53. https://doi.org/10.33271/mining18.01.045 [CrossRef] [Google Scholar]
  13. Schafer, D. (2013). Electret microphone modeling and optimization by combined finite element analysis (FEA) and lumped-element techniques. Proceedings of Meetings on Acoustics, (19), 1–8 https://doi.org/10.1121/1.4801049 [Google Scholar]
  14. Vladyko, O., Maltsev, D., Sala, D., Cichoń, D., Buketov, V., & Dychkovskyi, R. (2022). Simulation of leaching processes of polymetallic ores using the similarity theorem. Rudarsko-Geološko-Naftni Zbornik, 37(5), 169–180. https://doi.org/10.17794/rgn.2022.5.14 [CrossRef] [Google Scholar]
  15. Sala, D., & Bieda, B. (2022). Stochastic approach based on Monte Carlo (MC) simulation used for Life Cycle Inventory (LCI) uncertainty analysis in Rare Earth Elements (REEs) recovery. E3S Web of Conferences, (349), 01013. https://doi.org/10.1051/e3sconf/202234901013 [CrossRef] [EDP Sciences] [Google Scholar]
  16. Sala, D., & Bieda, B. (2022). Application of uncertainty analysis based on Monte Carlo (MC) simulation for life cycle inventory (LCI). Inżynieria Mineralna, 2(2). https://doi.org/10.29227/im-2019-02-80 [Google Scholar]
  17. Wei, C., Yu, D., & Dingier, T. (2020). Reading on 3D Surfaces in Virtual Environments. IEEE Conference on Virtual Reality and 3D User Interfaces (VR). https://doi.org/10.1109/vr46266.2020.1581590322523 [Google Scholar]
  18. Rosero-Montalvo, P., & Alvear-Puertas, V. (2022). Efficient Lightweight Cryptography Algorithm in IoT Devices with Real-time Criteria. Proceedings of the 7th International Conference on Internet of Things, Big Data and Security, (1), 103–109. https://doi.org/10.5220/0010922800003194 [Google Scholar]
  19. Russkikh, V., Demchenko, Yu., Salli, S., & Shevchenko, O. (2013). New technical solutions during mining C5 coal seam under complex hydro-geological conditions of western Donbass. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 257–260. https://doi.org/10.1201/b16354-47 [CrossRef] [Google Scholar]
  20. Polyanska, A., Pazynich, Y., Poplavska, Z., Kashchenko, Y., Psiuk, V., & Martynets, V. (2024). Conditions of Remote Work to Ensure Mobility in Project Activity. Lecture Notes in Mechanical Engineering, 151–166. https://doi.org/10.1007/978-3-031-56474-1_12 [CrossRef] [Google Scholar]
  21. Siata, E., & Ptak, E. (2007). Dodatek nr 3 do dokumentacji geologicznej złoża węgla kamiennego “Bogdanka” w kategoriach A, B, C1 i C2. PRGW Sp. z o.o., Sosnowiec, 84 s. [Google Scholar]
  22. Gabzdyl, W. (1994). Geologia złóż węgla. Warszawa: Polska Agencja Ekologiczna, 381 s. [Google Scholar]
  23. Kopacz, M., Kulpa, J., Galica, D., Dyczko, A., & Jarosz, J. (2019). Economic valuation of coal deposits – The value of geological information in the resource recognition process. Resources Policy, (63), 101450. https://doi.org/10.1016/j.resourpol.2019.101450 [CrossRef] [Google Scholar]
  24. Wang, J., Apel, D. B., Dyczko, A., Walentek, A., Prusek, S., Xu, H., & Wei, C. (2021). Investigation of the Rockburst Mechanism of Driving Roadways in Close-Distance Coal Seam Mining Using Numerical Modeling Method. Mining, Metallurgy & Exploration, 38(5), 1899–1921. https://doi.org/10.1007/s42461-021-00471-2 [CrossRef] [Google Scholar]
  25. Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., & Dubiei, Yu.V. (2019). Technological, lithological and economic aspects of data geometrization in coal mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 22–28. https://doi.org/10.29202/nvngu/2019-5/4 [Google Scholar]
  26. Sosnowski, P. (2020). A New Look at the Geological Structure of the Knurów Hard Coal Deposit in Light of Model Tests. New Trends in Production Engineering, 3(1), 186–196. https://doi.org/10.2478/ntpe-2020-0015 [CrossRef] [Google Scholar]
  27. Kowalczyk, D., & Kulpa, J. (2024). A new perspective on the geological prospection of the Bzie-Dębina deposit, with an emphasis on the correlation of seams and coal quality parameters. E3S Web of Conferences, (526), 01020. https://doi.org/10.1051/e3sconf/202452601020 [CrossRef] [EDP Sciences] [Google Scholar]
  28. Kassymkanova, K.K., Rysbekov, K.B., Nurpeissova, M.B., Kyrgizbayeva, G.M., Amralinova, B.B., Soltabaeva, S.T., Salkynov, A., & Jangulova, G. (2023). Geophysical studies of rock distortion in mining operations in complex geological conditions. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (48), 57–62. https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-57-2023 [CrossRef] [Google Scholar]
  29. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environmental Science, (10), 878977. https://doi.org/10.3389/fenvs.2022.878977 [CrossRef] [Google Scholar]
  30. Haidai, O., Ruskykh, V., Ulanova, N., Prykhodko, V., Cabana, E. C., Dychkovskyi, R., ... & Smolinski, A. (2022). Mine field preparation and coal mining in western Donbas: Energy security of Ukraine – a case study. Energies, 15(13), 4653. https://doi.org/10.3390/en15134653 [CrossRef] [Google Scholar]
  31. Alpysbay, M.A., Orynbassarova, E.O., Sydyk, N.K., Adebiyet, B., & Kamza A. (2024). Mining mapping and exploration using remote sensing data in Kazakhstan: a review. Engineering Journal of Satbayev University, 146(2), 37–46. https://doi.org/10.51301/ejsu.2024.i2.05 [Google Scholar]
  32. Bazaluk, O., Sadovenko, I., Zahrytsenko, A., Saik, P., Lozynskyi, V., & Dychkovskyi, R. (2021). Forecasting Underground Water Dynamics within the Technogenic Environment of a Mine Field: Case Study. Sustainability, 13(13), 7161. https://doi.org/10.3390/su13137161 [CrossRef] [Google Scholar]
  33. Sosnowski, P., Dyczko, A., & Kamiński, P. (2024). Quality management in a 3D geological model – reliability of predicted hard coal quality parameters. E3S Web of Conferences, (526), 01003. https://doi.org/10.1051/e3sconf/202452601003 [CrossRef] [EDP Sciences] [Google Scholar]
  34. Vlasov, S., Moldavanov, Y., Dychkovskyi, R., Cabana, E., Howaniec, N., Widera, K., Bąk, A., & Smoliński, A. (2022). A Generalized View of Longwall Emergency Stop Prevention (Ukraine). Processes, 10(5), 878. https://doi.org/10.3390/pr10050878 [CrossRef] [Google Scholar]
  35. Yilmaz, F., Ozturk, M., & Selbas, R. (2019). Design and thermodynamic analysis of coal-gasification assisted multigeneration system with hydrogen production and liquefaction. Energy Conversion and Management, 186, 229–240. https://doi.org/10.1016/j.enconman.2019.02.053 [CrossRef] [Google Scholar]
  36. Wang, Z., Qu, H., Wu, Z., Yang, H., & Du, Q. (2016). Formal representation of 3D structural geological models. Computers & Geosciences, (90), 10–23. https://doi.org/10.1016/j.cageo.2016.02.007 [CrossRef] [Google Scholar]
  37. Sobczyk, E.J., Galica, D., Kopacz, M., & Sobczyk, W. (2022). Selecting the Optimal Exploitation Option Using a Digital Deposit Model and the Ahp. SSRN Electronic Journal, (78), 102952. https://doi.org/10.2139/ssrn.4047752 [Google Scholar]
  38. Sideri, D., Roumpos, C., Pavloudakis, F., Paraskevis, N., & Modis, K. (2020). Multivariate Geostatistical Modeling of Lower Calorific Value in Multi-Seam Coal Deposits. Applied Sciences, 10(18), 6208. https://doi.org/10.3390/app10186208 [CrossRef] [Google Scholar]
  39. Hillier, M.J., de Kemp, E.A., & Schetselaar, E.M. (2017). Implicit 3D modelling of geological surfaces with the Generalized Radial Basis Functions (GRBF) algorithm. Natural Resources Canada/CMSS/Information Management, 7814. https://doi.org/10.4095/301665 [Google Scholar]
  40. Golda, K., Paszek, L., & Kulpa, J. (2024). Geological and technological viewpoint on 3D Deposit Model – examples of use in Pniówek Coal Mine. E3S Web of Conferences, (526), 01007. https://doi.org/10.1051/e3sconf/202452601007 [CrossRef] [EDP Sciences] [Google Scholar]
  41. Munson, J.C. (1996). Software faults, software failures and software reliability modeling. Information and Software Technology, 38(11), 687–699. https://doi.org/10.1016/0950-5849(96)01117-2 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.