Open Access
Issue
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
Article Number 01006
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/202456701006
Published online 09 September 2024
  1. Stupnik, M., Kalinichenko, V., Fedko, M., Pysmennyi, S., Kalinichenko, O., & Pochtarev, A. (2022). Methodology enhancement for determining parameters of room systems when mining uranium ore in the SE “SkhidGZK” underground mines, Ukraine. Mining of Mineral Deposits, 16(2). 33–41. https://doi.org/10.33271/mining16.02.033 [CrossRef] [Google Scholar]
  2. Pysmennyi, S., Chukharev, S., Kyelgyenbai, K., Mutambo, V., & Matsui, A. (2022). Iron ore underground mining under the internal overburden dump at the PJSC “Northern GZK”. IOP Conference Series: Earth and Environmental Science, 1049(1), 012008. https://doi.org/10.1088/1755-1315/1049/1/012008 [CrossRef] [Google Scholar]
  3. Pysmennyi, S., Brovko, D., Shwager, N., Kasatkina, I., Paraniuk, D., & Serdiuk, O. (2018). Development of complex-structure ore deposits by means of chamber systems under conditions of the Kryvyi Rih iron ore field. Eastern-European Journal of Enterprise Technologies, 5(1(95)), 33–45. https://doi.org/10.15587/1729-4061.2018.142483 [CrossRef] [Google Scholar]
  4. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 193–197. http://doi.org/10.1201/b11329-31 [Google Scholar]
  5. Hryhoriev, Y., Lutsenko, S., & Joukov, S. (2023). Dominant determinants of adaptation of the mining complex in the conditions of a dynamic environment. Inżynieria Mineralna, 1(1). https://doi.org/10.29227/im-2023-01-02 [Google Scholar]
  6. Morkun, V., & Tron, V. (2014). Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry, 6(6), 4–7. [Google Scholar]
  7. Hryhoriev, Y., Lutsenko, S., Systierov, O., Kuttybayev A., & Kuttybayeva A. (2023). Implementation of sustainable development approaches by creating the mining cluster: the case of MPP “Inguletskiy.” IOP Conference Series: Earth and Environmental Science, 1254(1), 012055–012055. https://doi.org/10.1088/1755-1315/1254/1/012055 [CrossRef] [Google Scholar]
  8. Isabek, T., Orynbek, Y., Kozhogulov, K., Sarkulova, Zh., Abdiyeva, L., & Yefremova, S. (2022). Geomechanical substantiation of the parameters for the mining system with ore shrinkage in the combined mining of steep-dipping ore bodies. Mining of Mineral Deposits, 16(4), 115–121. https://doi.org/10.33271/mining16.04.115 [CrossRef] [Google Scholar]
  9. Stupnik, M.I., Kalinichenko, O.V., & Kalinichenko, V.O. (2012). Economic evaluation of risks of possible geomechanical violations of original ground in the fields of mines of Kryvyi Rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 126–130. [Google Scholar]
  10. Portnov, V.S., Yurov, V.M., Maussymbayeva, A.D., Kassymov, S.S., & Zholmagambetov, N.R. (2017). Assessment of radiation risk at the population from pits, dumps and tailing dams of uranium mines. International Journal of Mining, Reclamation and Environment, 31(3), 205–211. https://doi.org/10.1080/17480930.2016.1268801 [CrossRef] [Google Scholar]
  11. Kononenko M., & Khomenko O. (2021). New theory for the rock mass destruction by blasting. Mining of Mineral Deposits, 15(2), 111–123. https://doi.org/10.33271/mining15.02.111 [CrossRef] [Google Scholar]
  12. Pysmennyi, S., Fedko, M., Chukharev, S., Sakhno, I., Moraru, R., & Panayotov, V. (2023). Enhancement of the rock mass quality in underground iron ore mining through application of resource-saving technologies. IOP Conference Series: Earth and Environmental Science, 1156(1), 012029. https://doi.org/10.1088/1755-1315/1156/1/012029 [CrossRef] [Google Scholar]
  13. Portnov, V.S., Yurov, V.M., & Mausymbaeva, A.D. (2018). Influence of Surface Properties of Minerals on Rebellious Ore Disintegration. Journal of Mining Science, 54(4), 681–689. https://doi.org/10.1134/s106273911804460 [CrossRef] [Google Scholar]
  14. Khomenko, O., Rudakov, D., Lkhagva, T., Sala, D., Buketov, V., & Dychkovskyi, R. (2023). Managing the horizon-oriented in-situ leaching for the uranium deposits of Mongolia. Rudarsko-Geološko-Naftni Zbornik, 38(5), 49–60. https://doi.org/10.17794/rgn.2023.5.5 [CrossRef] [Google Scholar]
  15. Stupnik, M., Kalinichenko, V., Kalinichenko, O., Shepel, O., & Hryshchenko, M. (2023). Scientific and technical problems of transition from open pit to combined technologies for raw materials mining. IOP Conference Series: Earth and Environmental Science, 1254(1), 012070. https://doi.org/10.1088/1755-1315/1254/1/012070 [CrossRef] [Google Scholar]
  16. Kosenko, A.V. (2023). Development of an efficient process scheme for breaking high-grade iron ores of low strength and stability during sublevel caving. Science and Innovation, 19(3), 38–47. https://doi.org/10.15407/scine19.03.038 [CrossRef] [Google Scholar]
  17. Moshynskyi, V., Zhomyruk, R., Vasylchuk, O., Semeniuk, V., Okseniuk, R., Rysbekov, K., & Yelemessov, K. (2021). Investigation of technogenic deposits of phosphogypsum dumps. E3S Web of Conferences, (280), 08008. https://doi.org/10.1051/e3sconf/202128008008 [CrossRef] [EDP Sciences] [Google Scholar]
  18. Pivnyak, G.G., & Shashenko, O.M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118–121. [Google Scholar]
  19. Vladyko, O., Maltsev, D., Sala, D., Cichoń, D., Buketov, V., & Dychkovskyi, R. (2022). Simulation of leaching processes of polymetallic ores using the similarity theorem. Rudarsko-Geološko-Naftni Zbornik, 37(5), 169–180. https://doi.org/10.17794/rgn.2022.5.14 [CrossRef] [Google Scholar]
  20. Wang, J., Apel, D. B., Dyczko, A., Walentek, A., Prusek, S., Xu, H., & Wei, C. (2022). Analysis of the damage mechanism of strainbursts by a global-local modeling approach. Journal of Rock Mechanics and Geotechnical Engineering, 14(6), 1671–1696. https://doi.org/10.1016/j.jrmge.2022.01.009 [CrossRef] [Google Scholar]
  21. Khorolskyi, A., Kosenko, A., & Chobotko, I. (2024). Application of graphs and network models for designing processes for control of the stress-strain state of a rock mass. ARPN Journal of Engineering and Applied Sciences, 19(3), 164–171. https://doi.org/10.59018/022429 [Google Scholar]
  22. Pysmennyi, S., Fedko, M., Chukharev, S., Rysbekov, K., Kyelgyenbai, K., & Anastasov, D. (2022). Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conference Series: Earth and Environmental Science, 970(1), 012040. https://doi.org/10.1088/1755-1315/970/1/012040 [CrossRef] [Google Scholar]
  23. Stupnik, M.I., Kalinichenko, O.V., & Kalinichenko, V.O. (2012). Technical and economic study of self-propelled machinery application expediency in mines of Krivorozhsky basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 39–42. [Google Scholar]
  24. Pysmennyi, S., Chukharev, S., Kourouma, I.K., Kalinichenk, V., & Matsui, A., (2023). Development of Technologies for Mining Ores with Instable Hanging Wall Rocks. Inżynieria Mineralna, 1(51), 103–112. http://doi.org/10.29227/IM-2023-01-13 [Google Scholar]
  25. Bazaluk, O., Rysbekov, K., Nurpeisova, M., Lozynskyi, V., Kyrgizbayeva, G., & Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, (10), 852591. https://doi.org/10.3389/fenvs.2022.852591 [CrossRef] [Google Scholar]
  26. Stupnik, M., Kalinichenko, V., Kalinichenko, O., & Pochtarev, A. (2021). Technological measures to enhance efficiency of mining ore from stopes applying self-propelled equipment. E3S Web of Conferences, (280), 08010. https://doi.org/10.1051/e3sconf/202128008010 [CrossRef] [EDP Sciences] [Google Scholar]
  27. Kyelgyenbai, K., Pysmennyi, S., Chukharev, S., Purev, B., & Jambaa, I. (2021). Modelling for degreasing the mining equipment downtime by optimizing blasting period at Erdenet surface mine. E3S Web of Conferences, (280), 08001. https://doi.org/10.1051/e3sconf/202128008001 [CrossRef] [EDP Sciences] [Google Scholar]
  28. Salkynov, A., Rymkulova, A., Suimbayeva, A., & Zeitinova, S. (2023). Research into deformation processes in the rock mass surrounding the stoping face when mining sloping ore deposits. Mining of Mineral Deposits, 17(2), 82–90. https://doi.org/10.33271/mining17.02.082 [CrossRef] [Google Scholar]
  29. Kononenko M., Khomenko O., Kovalenko I., Kosenko A., Zagorodnii R., & Dychkovskyi R. (2023). Determining the performance of explosives for blasting management. Rudarsko-Geološko-Naftni Zbornik, 38(3), 19–28. https://doi.org/10.17794/rgn.2023.3.2 [CrossRef] [Google Scholar]
  30. Skidin, I.E., Vodennikova, O.S., Saithareiev, L.N., Baboshko, D.Y., & Barmenshinova, M.B. (2023). Technology of forming a wear-resistant thermite alloy layer based on the Fe-Cr-C system by self-propagating high-temperature synthesis. IOP Conference Series: Earth and Environmental Science, 1254(1), 012008. https://doi.org/10.1088/1755-1315/1254/1/012008 [CrossRef] [Google Scholar]
  31. Mambetaliyeva, A.R., Mamyrbayeva, K.K., Turysbekov, D.K., Dauletbakov, T.S., & Barmenshinova, M.B. (2022). Investigation of the process of sulfiding of gold-arsenic containing ores and concentrates. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 51–56. https://doi.org/10.33271/nvngu/2022-3/051 [CrossRef] [Google Scholar]
  32. Pysmennyi, S., Chukharev, S., Peremetchy, A., Fedorenko, S., & Matsui, A. (2023). Study of stress concentration on the contour of underground mine workings. Inżynieria Mineralna, 1(51), 69–78. http://doi.org/10.29227/IM-2023-01-08 [Google Scholar]
  33. Saik, P., Cherniaiev, O., Anisimov, O., Dychkovskyi, R., & Adamchuk, A. (2023). Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods. Mining of Mineral Deposits, 17(4), 91–102. https://doi.org/10.33271/mining17.04.091 [CrossRef] [Google Scholar]
  34. Takhanov, D., Balpanova, M., Kenetayeva, A., Rabatuly, M., Zholdybayeva, G., & Usupayev, S. (2023). Risk assessments for rockfalls taking into account the structure of the rock mass. E3S Web of Conferences, (44), 04012. https://doi.org/10.1051/e3sconf/202344304012 [CrossRef] [EDP Sciences] [Google Scholar]
  35. Malanchuk, Z.R., Moshynskyi, V.S., Korniienko, V.Y., Malanchuk, Y.Z., & Lozynskyi, V.H. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 11–18. https://doi.org/10.29202/nvngu/2019-6/2 [Google Scholar]
  36. Kononenko, M., Khomenko, O., Cabana, E., Mirek, A., Dyczko, A., Prostański, D., & Dychkovskyi, R. (2023). Using the methods to calculate parameters of drilling and + blasting operations for emulsion explosives. Acta Montanistica Slovaca, 28(3), 655–667. https://doi.org/10.46544/ams.v28i3.10 [CrossRef] [Google Scholar]
  37. Pysmennyi, S., Peremetchyk, A., Chukharev, S., Fedorenko, S., Anastasov, D., & Tomiczek, K. (2022). The mining and geometrical methodology for estimating of mineral deposits. IOP Conference Series: Earth and Environmental Science, 1049(1), 012029. https://doi.org/10.1088/1755-1315/1049/1/012029 [CrossRef] [Google Scholar]
  38. Imashev, A., Suimbayeva, A., Zhunusbekova, G., Zeitinova, S., Kuttybayev, A., & Mussin, A. (2022). Research into stress-strain state of the mass under open pit with a change in the open-pit bottom width. Mining of Mineral Deposits, 16(3), 61–66. https://doi.org/10.33271/mining16.03.061 [CrossRef] [Google Scholar]
  39. Kononenko, M., Khomenko, O., Kovalenko, I., & Savchenko, M. (2021). Control of density and velocity of emulsion explosives detonation for ore breaking. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 69–75. https://doi.org/10.33271/nvngu/2021-2/069 [CrossRef] [Google Scholar]
  40. Khomenko, O., Tsendjav, L., Kononenko, M., & Janchiv, B. (2017). Nuclear-and-fuel pow-er industry of Ukraine: production, science, education. Mining of Mineral Deposits, 11(4), 86–95. http://doi.org/10.15407/mining11.04.086 [CrossRef] [Google Scholar]
  41. Pysmennyi, S., Chukharev, S., Khavalbolot, K., Bondar, I., & Ijilmaa, J. (2021). Enhancement of the technology of mining steep ore bodies applying the “floating” crown. E3S Web of Conferences, (280), 08013. https://doi.org/10.1051/e3sconf/202128008013 [CrossRef] [EDP Sciences] [Google Scholar]
  42. Petlovanyi, M., Ruskykh, V., Zubko, S., & Medianyk, V. (2020). Dependence of the mined ores quality on the geological structure and properties of the hanging wall rocks. E3S Web of Conferences, (201), 01027. https://doi.org/10.1051/e3sconf/202020101027 [CrossRef] [EDP Sciences] [Google Scholar]
  43. Bazaluk, O., Anisimov, O., Saik, P, Lozynskyi, V., Akimov, O., & Hrytsenko, L. (2023). Determining the safe distance for mining equipment operation when forming an internal dump in a deep open pit. Sustainability, 15(7), 5912. https://doi.org/10.3390/su15075912 [CrossRef] [Google Scholar]
  44. Falshtynskyi, V., Dychkovskyi, R., Khomenko, O., & Kononenko, M. (2020). On the formation of a mine-based energy resource complex. E3S Web of Conferences, (201), 01020. https://doi.org/10.1051/e3sconf/202020101020 [CrossRef] [EDP Sciences] [Google Scholar]
  45. Peremetchyk, A., Pysmennyi, S., Shvaher, N., Fedorenko, S., & Podoynitsyna, T. (2023). Modeling and prediction of iron ore quality indicators. Inżynieria Mineralna, 1(51), 127–136. http://doi.org/10.29227/IM-2023-01-15 [Google Scholar]
  46. Petlovanyi, M., & Mamaikin, O. (2019). Assessment of an expediency of binder material mechanical activation in cemented rockfill. ARPN Journal of Engineering and Applied Sciences, 14(20), 3492–3503. [Google Scholar]
  47. Kosenko, A.V. (2021). Improvement of sub-level caving mining methods during high-grade iron ore mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 19–25. https://doi.org/10.33271/nvngu/2021-1/019 [CrossRef] [Google Scholar]
  48. Kononenko, M., Khomenko, O., Sadovenko, I., Sobolev, V., Pazynich, Yu., & Smolinski, A. (2023). Managing the rock mass destruction under the explosion. Journal of Sustainable Mining, 22(3), 240–247. https://doi.org/10.46873/2300-3960.1391 [CrossRef] [Google Scholar]
  49. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environmental Science, (10), 878977. https://doi.org/10.3389/fenvs.2022 [CrossRef] [Google Scholar]
  50. Kononenko, M., Khomenko, O., Kosenko, A., Myronova, I., Bash, V., & Pazynich, Y. (2024). Raises advance using emulsion explosives. E3S Web of Conferences, (526), 01010. https://doi.org/10.1051/e3sconf/202452601010 [CrossRef] [EDP Sciences] [Google Scholar]
  51. Chepushtanova, T.A., Yulussov, S.B., Baigenzhenov, O.S., Khabiyev, A.T., Merkibayev, Y.S., & Mishra, B. (2024). Review of methods for processing ore vanadium-containing raw materials. Engineering Journal of Satbayev University, 146(1), 15–22. https://doi.org/10.51301/ejsu2024.i1.03 [Google Scholar]
  52. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability assessment of hanging wall rocks during underground mining of iron ores. Minerals, 11(8), 858. https://doi.org/10.3390/min11080858 [CrossRef] [Google Scholar]
  53. Saik, P., Cherniaiev, O., Anisimov, O., & Rysbekov, K. (2023). Substantiation of the direction for mining operations that develop under conditions of shear processes caused by hydrostatic pressure. Sustainability, 15(22), 15690. https://doi.org/10.3390/su152215690 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.