Open Access
Issue
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
Article Number 01010
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202456701010
Published online 09 September 2024
  1. Novikova, A.M., & Symonenko, R.V. (2022). Sea Ports of Ukraine during the Russian Agression. European Journal of Maritime Research, 1(1), 7–10. https://doi.org/10.24018/maritime.2022.1.1.7 [CrossRef] [Google Scholar]
  2. Saik, P., Cherniaiev, O., Anisimov, O., Dychkovskyi, R., & Adamchuk, A. (2023). Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods. Mining of Mineral Deposits, 17(4), 91–102. https://doi.org/10.33271/mining17.04.091 [CrossRef] [Google Scholar]
  3. Polyanska, A., Pazynich, Y., Mykhailyshyn, K., Babets, D., & Toś, P. (2024). Aspects of energy efficiency management for rational energy resource utilization. Rudarsko-Geološko-NaftniZbornik, 39(3), 13–26. https://doi.org/10.17794/rgn.2024.3.2 [CrossRef] [Google Scholar]
  4. Dychkovskyi, R., Saik, P., Sala, D., & Cabana, E.C. (2024). The current state of the non-ore mineral deposits mining in the concept of the Ukraine reconstruction in the post-war period. Mineral Economics, 1–11. https://doi.org/10.1007/s13563-024-00436-z [Google Scholar]
  5. Kicki, J., & Dyczko, A. (2010). The concept of automation and monitoring of the production process in an underground mine. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 245–253. https://doi.org/10.1201/b11329-40 [Google Scholar]
  6. Sakellariou, M. (Ed.). (2020). Tunnel Engineering – Selected Topics. Athens: National Technical University of Athens, 294 p. https://doi.org/10.5772/intechopen.77496 [Google Scholar]
  7. Gilbert, P.H., Ariaratnam, S.T., Connery N.R., & English, G. (2013). Underground Engineering for Sustainble Urban Development. Washington, DC: The National Academies Press, 246 p. https://doi.org/10.17226/14670 [Google Scholar]
  8. Boiko, V.V., Han, A.L., & Han, O.V. (2022). Spetsialni vybukhovi tekhnolohii v heoinzhenerii. Kyiv, Ukraina: KPI, 316 s. [Google Scholar]
  9. Tiutkin O.L. (2020). Teoretychni osnovy kompleksnoho analizu tunelnykh konstruktsii. Dnipro, Ukraina: Zhurfond, 260 s. [Google Scholar]
  10. Dyczko, A., Galica, D., & Sypniowski, S. (2012). Deposit model as a first step in mining production scheduling. Geomechanical Processes during Underground Mining – Proceedings of the School of Underground Mining, 231–247. https://doi.org/10.1201/b13157-39 [Google Scholar]
  11. Polyanska, A., Pazynich, Y., Poplavska, Z., Kashchenko, Y., Psiuk, V., & Martynets, V. (2024). Conditions of remote work to ensure mobility in project activity. Lecture Notes in Mechanical Engineering, 151–166. https://doi.org/10.1007/978-3-031-56474-1_12 [CrossRef] [Google Scholar]
  12. Pankratova, N., Haiko, H., & Savchenko, I. (2024). Strategy for modeling complex urban underground environments based on the methodologies of foresight and cognitive modeling. The Urban Book Series, 189–256. https://doi.org/10.1007/978-3-031-47522-1_6 [CrossRef] [Google Scholar]
  13. Dyczko, A., Kamiński, P., Jarosz, J., Rak, Z., Jasiulek, D., & Sinka, T. (2021). Monitoring of roof dolting as an element of the project of the introduction of roof bolting in Polish coal mines – case study. Energies, 15(1), 95. https://doi.org/10.3390/en15010095 [CrossRef] [Google Scholar]
  14. Kozachenko, L.S., & Kolkov, O.S. (1976). Shear and bulk deformation in sandy soil. Soviet Mining Science, 12(6), 576–579. https://doi.org/10.1007/bf02497447 [CrossRef] [Google Scholar]
  15. Russkikh, V., Demchenko, Yu., Salli, S., & Shevchenko, O. (2013). New technical solutions during mining c5 coal seam under complex hydro-geological conditions of western Donbass. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 257–260. https://doi.org/10.1201/b16354-47 [CrossRef] [Google Scholar]
  16. Geyling, F., & Key, P. (1979). Stress relaxation of residual metalworking stresses. Stress Relaxation Testing, 143–154. https://doi.org/10.1520/stp37421s [CrossRef] [Google Scholar]
  17. Russkikh, V., Yavors’kyy, A., Zubko, S., & Chistyakov, Ye. (2013). Study of rock geomechanical processes while mining two-level interchamber pillars. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 149–152. https://doi.org/10.1201/b16354-25 [CrossRef] [Google Scholar]
  18. Khoshghalb, A., & Khalili, N. (2014). Coupling between deformation and flow models in deformable unsaturated soils. Unsaturated Soils: Research & Applications, 511–516. https://doi.org/10.1201/b17034-71 [CrossRef] [Google Scholar]
  19. Seheda, M.S., Beshta, O.S., Gogolyuk, P.F., Blyznak, Yu.V., Dychkovskyi, R.D., & Smoliński, A. (2024). Mathematical model for the management of the wave processes in three-winding transformers with consideration of the main magnetic flux in mining industry. Journal of Sustainable Mining, 23(1), 20–39. https://doi.org/10.46873/2300-3960.1402 [CrossRef] [Google Scholar]
  20. Furuta, T. (1986). Similarity between Kleinecke-Shirokov theorem and Fuglede-Putnam theorem. Bulletin of the Australian Mathematical Society, 33(3), 329–333. https://doi.org/10.1017/s0004972700003890 [CrossRef] [Google Scholar]
  21. Vladyko, O., Maltsev, D., Sala, D., Cichoń, D., Buketov, V., & Dychkovskyi, R. (2022). Simulation of leaching processes of polymetallic ores using the similarity theorem. Rudarsko-Geološko-NaftniZbornik, 37(5), 169–180. https://doi.org/10.17794/rgn.2022.5.14 [CrossRef] [Google Scholar]
  22. Psyuk, V., & Polyanska, A. (2024). The usage of artificial intelligence in the activities of mining enterprises. E3S Web of Conferences, (526), 01016. https://doi.org/10.1051/e3sconf/202452601016 [CrossRef] [EDP Sciences] [Google Scholar]
  23. Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3.9 [CrossRef] [Google Scholar]
  24. Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., & Cabana, E. (2019). Some aspects of modern vision for geoenergy usage. E3S Web of Conferences, (123), 01010. https://doi.org/10.1051/e3sconf/201912301010 [CrossRef] [EDP Sciences] [Google Scholar]
  25. Dudek, M., & Pawlewski, P. (2010). Implementation of Network oriented manufacturing structures. Lecture Notes in Computer Science, 282–291. https://doi.org/10.1007/978-3-642-13541-5_29 [CrossRef] [Google Scholar]
  26. Meschyan, S.R. (1967). Clay soil creep. Yerevan: Barekamutyan, 320 p. [Google Scholar]
  27. Meschyan, S.R. (2005). Experimental rheology of claysoils. Yerevan: Gitutyun NANRA, 498 p. [Google Scholar]
  28. Shirinkulov, T.Sh., & Zareckij, Yu.K. (1986). Creep and soil consolidation. Tashkent: FAN Uzbekskij SSR, 392 p. [Google Scholar]
  29. Ter-Martirosyan, Z., Ter-Martirosyan, A., & Ermoshina, L. (2022). Settlement and long-term bearing capacity of a pile taking into account the rheological properties of soils. Construction and Geotechnics, 13(1), 5–15. https://doi.org/10.15593/2224-9826/2022.1.01 [CrossRef] [Google Scholar]
  30. Grant, K. (1982). Fundamentals of Soil Physics. Engineering Geology, 19(1), 70. https://doi.org/10.1016/0013-7952(82)90012-6 [Google Scholar]
  31. Meschyan, S.R. (1992). Rheological processes in clayey soils (taking into account special influences). Yerevan: Hayastan, 395 p. [Google Scholar]
  32. Bell, F.G. (1983). The mechanics of soil. Fundamentals of Engineering Geology, 373–434. https://doi.org/10.1016/b978-0-408-01169-3.50013-4 [CrossRef] [Google Scholar]
  33. Savon, D.Yu., Zhaglovskaya, A.V., Safronov, A.E., & Sala, D. (2018). Development of patenting in coal industry. Eurasian Mining, 9–11. https://doi.org/10.17580/em.2018.01.02 [CrossRef] [Google Scholar]
  34. Pedchenko, M., Pedchenko, L., Nesterenko, T., & Dyczko, A. (2018). Technological Solutions for the Realization of NGH-Technology for Gas Transportation and Storage in Gas Hydrate Form. Solid State Phenomena, (277), 123–136. https://doi.org/10.4028/www.scientific.net/ssp.277.123 [CrossRef] [Google Scholar]
  35. Nieuwenhuis, J.D. (1988). Rheological Fundamentals of Soil Mechanics. Engineering Geology, 26(1), 102. https://doi.org/10.1016/0013-7952(88)90009-9 [CrossRef] [Google Scholar]
  36. Sobolev, E., & Morev, D. (2019). The industrial buildings settlement foundations calculation made taking into account the soils vibro-creep. IOP Conference Series: Materials Science and Engineering, 698(2), 022038. https://doi.org/10.1088/1757-899x/698/2/022038 [CrossRef] [Google Scholar]
  37. Arenson, L.U., Springman, S.M., & Sego, D.C. (2007). The Rheology of Frozen Soils. Applied Rheology, 17(1), 12147-1–12147-14. https://doi.org/10.1515/arh-2007-0003 [CrossRef] [Google Scholar]
  38. Zaretskii, Yu., & Fish, A. (1996). Effect of temperature on the strength and viscosity of ice. Soil Mechanics and Foundation Engineering, (33), 46–52. [CrossRef] [Google Scholar]
  39. Tatsuoka, F., Di Benedetto, H., Enomoto, N., Kawabe, S., & Kongkitkul, W. (2008). Variousviscositytypesofgeomaterialsinshearandtheirmathematicalexpression. Soils and Foundations, 48(1), 41–60. [CrossRef] [Google Scholar]
  40. Naumenko, N., Markova, O., Kovtun E., & Maly, V. (2015). Determination of deformation of the soil foundation under the influence of short-term load. Technical mechanics, 261 p. [Google Scholar]
  41. Dyczko, A., Kamiński, P., Stecuła, K., Prostański, D., Kopacz, M., & Kowol, D. (2021). Thermal and mechanical energy storage as a chance for energy transformation in Poland. Polityka Energetyczna – Energy Policy Journal, 24(3), 43–60. https://doi.org/10.33223/epj/141867 [CrossRef] [Google Scholar]
  42. Sultanov, K., Loginov, P., Ismoilova, S., & Salikhova, Z. (2019). Wave processes in determining mechanical characteristics of soils. E3S Web of Conferences, (97), 04009. https://doi.org/10.1051/e3sconf/20199704009 [CrossRef] [EDP Sciences] [Google Scholar]
  43. Bai, M., & Elsworth, D. (1995). On the modeling of miscible flow in multi-component porous media. Transport in Porous Media, 21(1), 19–46. https://doi.org/10.1007/bf00615333 [CrossRef] [Google Scholar]
  44. Remez, N.S. (2019). Vzaiemodiia vybukhovukh khvyl z hruntamy i elementamy tekhnourboekosystem. Kyiv, Ukraina: Tsentr uchbovoi literatury, 335. [Google Scholar]
  45. Remez, N., Dychko, A., Besarabets, Y., Kraychuk, S., Ostapchuk, N., & Yevtieieva, L. (2019). Impact modelling of explosion of mixture explosive charges on the environment. Latvian Journal of Physics and Technical Sciences, 56(3), 37–49. https://doi.org/10.2478/lpts-2019-0018 [CrossRef] [Google Scholar]
  46. Remez, N., Dychko, A., Bronytskyi, V., Hrebeniuk, T., Bambirra Pereira, R., & Ekel, P. (2021). Simulation of the influence of dynamic loading on the stress-strain state of the natural and geoengineering environment. E3S Web of Conferences, (280), 01008. https://doi.org/10.1051/e3sconf/202128001008 [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.