Open Access
Issue |
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/e3sconf/202456701011 | |
Published online | 09 September 2024 |
- Lewicka, D., Zarębska, J., Batko, R., Tarczydło, B., Wożniak, M., Cichoń, D., & Pec, M. (2023). Circular Economy in the European Union. Circular Economy in the European Union: Organisational Practice and Future Directions in Germany, Poland and Spain, 21–267 https://doi.org/10.4324/9781003411239 [Google Scholar]
- Pedchenko, M., Pedchenko, L., Nesterenko, T., & Dyczko, A. (2018). Technological Solutions for the Realization of NGH-Technology for Gas Transportation and Storage in Gas Hydrate Form. Solid State Phenomena, (277), 123–136. https://doi.org/10.4028/www.scientific.net/ssp.277.123 [CrossRef] [Google Scholar]
- Sala, D., Pavlov, K., Pavlova, O., Dychkovskyi R., Ruskykh, V., & Pysanko, S. (2023). Determining the Level of Efficiency of Gas Distribution Enterprises in the Western Region of Ukraine. Inżynieria Mineralna, 2(2(52)), 109–122. https://doi.org/10.29227/im-2023-02-64 [Google Scholar]
- Dudek, M. (2012). Utilisation of simulation modelling to coordinate of distributed logistic resources. Congress Proceedings – CLC 2012: Carpathian Logistics Congress, 151–159. [Google Scholar]
- Polyanska, A., Pazynich, Y., Poplavska, Z., Kashchenko, Y., Psiuk, V., & Martynets, V. (2024). Conditions of remote work to ensure mobility in project activity. Lecture Notes in Mechanical Engineering, 151–166. https://doi.org/10.1007/978-3-031-56474-1_12 [CrossRef] [Google Scholar]
- Bunko, T.V., Safonov, V.V. & Matsuk, Z.M. (2018). Method of natural gas evacuation from subject to repair area of main gas pipeline. Heotekhnichna Mekhanika, (140), 143–157. https://doi.org/10.15407/geotm2018.03.143 [Google Scholar]
- Shirin, L.N., Bartashevsky, S.E., Denyshchenko, O.V. & Yehorchenko, R.R. (2021). Improving the Capacity of Mine Degassing Pipelines. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 72–77. https://doi.org/10.33271/nvngu/2021-6/072 [CrossRef] [Google Scholar]
- Bazaluk, O., Kuchyn, O., Saik, P., Soltabayeva, S., Brui, H., Lozynskyi, V., & Cherniaiev, O. (2023). Impact of ground surface subsidence caused by underground coal mining on natural gas pipeline. Scientific Reports, (13), 19327. https://doi.org/10.1038/s41598-023-46814-5 [CrossRef] [PubMed] [Google Scholar]
- Yehorchenko, R.R., Mukha, O.A., & Shirin, L.N. (2022). The methods to calculate expediency of composite degassing pipelines. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 23–27. https://doi.org/10.33271/nvngu/2022-4/023 [CrossRef] [Google Scholar]
- Yehorchenko, R.R., Yavorskyi, A.V., & Dyachkov, P.A. (2023). Modeling the corrosive destruction of underground degassing pipelines. Mining Machines, 41(4), 220–230. https://doi.org/10.32056/KOMAG2023.4.1 [Google Scholar]
- Bergman, J., Chung, H., Li, F., Zhang, D., Janapati, V., Cheung, C., & Bining, A. (2015). Maturation of real-time active pipeline integrity detection system for natural gas pipelines. Structural health monitoring. https://doi.org/10.12783/shm2015/50 [Google Scholar]
- Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., Dyczko, A., & Cabana, E. (2021). Gas hydrates technologies in the joint concept of geoenergy usage. E3S Web of Conferences, (230), 01023. https://doi.org/10.1051/e3sconf/202123001023 [CrossRef] [EDP Sciences] [Google Scholar]
- De Mare, G., Dolores, L., & Macchiaroli, M. (2023). Estimating the renovation cost of water, sewage, and gas pipeline networks: Multiple regression analysis to the appraisal of a reliable cost estimator for urban regeneration works. Buildings, 13(11), 2827. https://doi.org/10.3390/buildings13112827 [CrossRef] [Google Scholar]
- Standard by American Petroleum Institute. (2016). API RP 579-1/ASME FFS-1. Retrieved from https://www.techstreet.com/standards/api-rp-579-1-asme-ffs-1?product_id=1924300 [Google Scholar]
- Herckis, C. (2021). Understanding the basics of hydrostatic testing of gas and oil pipelines for quality control and integrity definition. Pipelines, 1–12. https://doi.org/10.1061/9780784483626.016 [Google Scholar]
- Zajam, S., Joshi, T., & Bhattacharya, B. (2019). Application of wavelet analysis and machine learning on vibration data from gas pipelines for structural health monitoring. Procedia Structural Integrity, (14), 712–719. https://doi.org/10.1016/j.prostr.2019.05.089 [CrossRef] [Google Scholar]
- Yakhina, E.N., & Sharafutdinova, G.M. (2024). Automated system for monitoring the gas content and parameters of temporary sealing devices on main gas pipelines. Oil and Gas Business, (2), 130–140. https://doi.org/10.17122/ogbus-2024-2-130-140 [CrossRef] [Google Scholar]
- Mineev, S.P., Pymonenko, D.M., Novikov, L.A., & Slashchev, A.I. (2019). Some features of transportation and processing of methane-air mixture in coal mines. Zbirnyk Naukovykh Prats Natsionalnoho Hirnychoho Universytetu, 98–107. https://doi.org/10.33271/crpnmu/59.098 [Google Scholar]
- Nath, F., Mahmood, M. N., & Yousuf, N. (2024). Recent advances in CCUS: A critical review on technologies, regulatory aspects and economics. Geoenergy Science and Engineering, 238, 212726. https://doi.org/10.1016/j.geoen.2024.212726 [CrossRef] [Google Scholar]
- Dudek, M. (2017). The analysis of the low-cost flexibility corridors. In 2017 IEEE International conference on innovations in intelligent systems and applications. Gdynia, Poland: Gdynia Maritime University, 478–483. https://doi.org/10.1109/inista.2017.8001207 [Google Scholar]
- Milenin, A., Velikoivanenko, E., Rozynka, G., & Pivtorak, N. (2023). Numerical analysis of brittle strength of welded pipelines with corrosion metal loss in transportation of blends of natural gas with hydrogen, 143. https://doi.org/10.21203/rs.3.rs-3303744/v1 [Google Scholar]
- Sofiyskiy, K.K., Stasevich, R.K., Pritula, D.A., & Dudlya, E.E. (2016). Іmproving safety of transportation, extraction and utilization of methane of surface decontaminating wells. Geotechnical Mechanics, 128. [Google Scholar]
- Moran, A.J., & Lillard, R.S. (2023). A modeling approach to understanding the interrelated nature of cathodic protection current and AC Stray Current on Pipelines. Corrosion, 79(5), 526–538. https://doi.org/10.5006/4272 [CrossRef] [Google Scholar]
- Kuzmenko, O., Dychkovskyi, R., Petlovanyi, M., Buketov, V., Howaniec, N., & Smolinski, A. (2023). Mechanism of interaction of backfill mixtures with natural rock fractures within the zone of their intense manifestation while developing steep ore deposits. Sustainability, 15(6), 4889. https://doi.org/10.3390/su15064889 [CrossRef] [Google Scholar]
- Vladyko, O., Maltsev, D., Cabana, E. C., Shavarskyi, I., & Dychkovskyi, R. (2022). Formation of the models of mining enterprise management. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 30–36. https://doi.org/10.33271/nvngu/2022-3/030 [CrossRef] [Google Scholar]
- Khomenko, O., Kononenko, M., & Netecha, M. (2016). Industrial research of massif zonal fragmentation around mine workings. Mining of Mineral Deposits, 10(1), 50–56. http://doi.org/10.15407/mining10.01.050 [CrossRef] [Google Scholar]
- Kononenko, M., Khomenko, O., Sudakov, A., Drobot, S., & Lkhagva, Ts. (2016). Numerical modelling of massif zonal structuring around underground working. Mining of Mineral Deposits, 10(3), 101–106. https://doi.org/10.15407/mining10.03.101 [CrossRef] [Google Scholar]
- Khomenko, O., Kononenko, M., & Bilegsaikhan, J. (2018). Classification of Theories about Rock Pressure. Solid State Phenomena, (277), 157–167. http://doi.org/10.4028/www.scientific.net/ssp.277.157 [CrossRef] [Google Scholar]
- Mensah, A., & Sriramula, S. (2024). Probabilistic finite element-based reliability of corroded pipelines with interacting corrosion cluster defects. International Journal of Pressure Vessels and Piping, (207), 105086. https://doi.org/10.1016/j.ijpvp.2023.105086 [CrossRef] [Google Scholar]
- Jiang, F., & Dong, S. (2024). Probabilistic-based burst failure mechanism analysis and risk assessment of pipelines with random non-uniform corrosion defects, considering the interacting effects. Reliability Engineering & System Safety, (242), 109783. https://doi.org/10.1016/j.ress.2023.109783 [CrossRef] [Google Scholar]
- Goodfellow, R., & Jonsson, K. (2015). Pipeline Integrity Management Systems (PIMS). Oil and Gas Pipelines, 1–12. Portico. https://doi.org/10.1002/9781119019213.ch01 [Google Scholar]
- Martin, G., & Vladimír, C. (2017). Conditions for Long-term Monitoring of Safety in Operation of Pipelines. Procedia Structural Integrity, (5), 614–619. https://doi.org/10.1016/j.prostr.2017.07.026 [CrossRef] [Google Scholar]
- Sofiysky, K.K., Stasevich, R.K., & Tyshchenko, A.V. (2018). Ensuring safety and protection of resource-saving trigeneration of coal deposits gases of mine and metallurgical production. Topical issues of resource-saving technologies in mineral mining and processing: Multi-authored monograph. Petroşani, Romania: UNIVERSITAS Publishing, 212–228. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.