Open Access
Issue |
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
|
|
---|---|---|
Article Number | 01023 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/e3sconf/202456701023 | |
Published online | 09 September 2024 |
- Dychkovskyi, R., Saik, P., Sala, D., & Cabana, E.C. (2024). The current state of the non-ore mineral deposits mining in the concept of the Ukraine reconstruction in the post-war period. Mineral Economics, 1–11. https://doi.org/10.1007/s13563-024-00436-z [Google Scholar]
- Shen, Z., Deifalla, A. F., Kamiński, P., & Dyczko, A. (2022). Compressive Strength Evaluation of Ultra-High-Strength Concrete by Machine Learning. Materials, 15(10), 3523. https://doi.org/10.3390/ma15103523 [CrossRef] [PubMed] [Google Scholar]
- Kononenko, M., Khomenko, O., Cabana, E., Mirek, A., Dyczko, A., Prostański, D., & Dychkovskyi, R. (2023). Using the methods to calculate parameters of drilling and blasting operations for emulsion explosives. Acta Montanistica Slovaca, 28(3), 655–667. https://doi.org/10.46544/AMS.v28i3.10 [CrossRef] [Google Scholar]
- Abuova, R.Z., Suleyev, D.K., & Burshukova, G.A. (2022). Study of damping properties of alloyed steels with ceramic-metallic nanostructured coating for critical parts. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 3(453), 52–65. https://doi.org/10.32014/2022.2518-170X.179 [Google Scholar]
- Li, Y., Zhang, Q., Kamiński, P., Deifalla, A. F., Sufian, M., Dyczko, A., Kahla, N. B., & Atig, M. (2022). Compressive Strength of Steel Fiber-Reinforced Concrete Employing Supervised Machine Learning Techniques. Materials, 15(12), 4209. https://doi.org/10.3390/ma15124209 [CrossRef] [PubMed] [Google Scholar]
- Yelemessov, K., Nauryzbayeva, D., Bortebayev, S., Baskanbayeva, D., & Chubenko, V. (2021). Efficiency of application of fiber concrete as a material for manufacturing bodies of centrifugal pumps. E3S Web of Conferences, (280), 07007. https://doi.org/10.1051/e3sconf/202128007007 [CrossRef] [EDP Sciences] [Google Scholar]
- Guryev, A.M., Ivanov, S.G., Guryev, M.A., Mei, S., & Quan, Z. (2021). Complex diffusion saturation of carbon steel 1045 with boron, chromium, titanium and silicon. IOP Conference Series: Materials Science and Engineering, (1100), 012048. https://doi.org/10.1088/1757-899X/1100/1/012048 [CrossRef] [Google Scholar]
- Ivanov, A.S., Karmanov, D.V., & Vdovina, O.N. (1999). Surface saturation of low-carbon martensite steels with boron and copper. Metal Science and Heat Treatment, (41), 246–249. https://doi.org/10.1007/BF02468237 [CrossRef] [Google Scholar]
- Belkin, P.N., Yerokhin, A., & Kusmanov, S.A. (2016). Plasma electrolytic saturation of steels with nitrogen and carbon. Surface and Coatings Technology, 307(C), 1194–1218. https://doi.org/10.1016/j.surfcoat.2016.06.027 [CrossRef] [Google Scholar]
- Ivanov, R. (2009). Two-component diffusive steel saturation. Materials and Manufacturing Processes, 24(7-8), 894–897. https://doi.org/10.1080/10426910902917728 [CrossRef] [Google Scholar]
- Filonenko, N.Yu., Bereza, O.Yu., & Pilyaeva, S.B. (2015). Effect of plastic prestraining of 25 steel on the diffusion saturation of its surface with boron and carbon. Materials Science, 51(2), 172–179. https://doi.org/10.1007/s11003-015-9825-9 [CrossRef] [Google Scholar]
- Christien, F., Downing, C., Moore, K.L., & Grovenor, C.R.M. (2012). Quantification of grain boundary equilibrium segregation by NanoSIMS analysis of bulk samples. Surface and Interface Analysis, 44(3), 377–387. https://doi.org/10.1002/sia.4806 [CrossRef] [Google Scholar]
- Takahashi, J., Ishikawa, K., Kawakami, K., Fujioka, M., & Kubota, N. (2017). Atomic-scale study on segregation behavior at austenite grain boundaries in boronand molybdenum-added steels. Acta Materialia, (133), 41–54. https://doi.org/10.1016/j.actamat.2017.05.021 [CrossRef] [Google Scholar]
- Skidin, I.E., Vodennikova, O.S., Saithareiev, L.N., Baboshko, D.Y., & Barmenshinova, M.B. (2023). Technology of forming a wear-resistant thermite alloy layer based on the Fe-Cr-C system by self-propagating high-temperature synthesis. IOP Conference Series: Earth and Environmental Science, 1254(1), 012008. https://doi.org/10.1088/1755-1315/1254/1/012008 [CrossRef] [Google Scholar]
- Brotzmann, S., & Bracht, H. (2008). Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium. Journal of Applied Physics, 103(3), 033508. https://doi.org/10.1063/1.2837103 [CrossRef] [Google Scholar]
- Portavoce, A., Abbes, O., Rudzevich, Y., Chow, L., Le Thanh, V., & Girardeaux, C. (2012). Manganese diffusion in monocrystalline germanium. Scripta Materialia, (67), 269–272. https://doi.org/10.1016/j.scriptamat.2012.04.038 [CrossRef] [Google Scholar]
- Miyamoto, G., Goto, A., Takayama, N., & Furuhara T. (2018). Three-dimensional atom probe analysis of boron segregation at austenite grain boundary in a low carbon steel – Effects of boundary misorientation and quenching temperature. Scripta Materialia, (154), 168–171. http://doi.org/10.1016/j.scriptamat.2018.05.046 [CrossRef] [Google Scholar]
- Mun, J., Shin, E.J., Cho, K.C., Lee, J.S., & Koo, Y.M. (2012). Cooling rate dependence of boron distribution in low carbon steel. Metallurgical and Materials Transactions A, (43), 1639–1648. https://doi.org/10.1007/s11661-011-0997-0 [CrossRef] [Google Scholar]
- Li, Y.J., Ponge, D., Choi, P., & Raabe, D. (2015). Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography. Scripta Materialia, (96), 13–16. http://doi.org/10.1016/j.scriptamat.2014.09.031 [CrossRef] [Google Scholar]
- Zhu, K., Oberbillig, C., Musik, C., Loison, D., & Iung, T. (2011). Effect of B and B + Nb on the bainitic transformation in low carbon steels. Materials Science and Engineering: A, 528(12), 42224231. https://doi.org/10.1016/j.msea.2011.02.022 [Google Scholar]
- Morral, J.E. & Cameron, T.B. (1977). A model for ferrite nucleation applied to boron hardenability. Metallurgical Transactions A, 8(11), 1817–1819. https://doi.org/10.1007/BF02646888 [CrossRef] [Google Scholar]
- Lejček, P., Všianská, M., & Šob, M. (2018). Recent trends and open questions in grain boundary segregation. Journal of Materials Research, (33), 2647–2660. https://doi.org/10.1557/jmr.2018.230 [Google Scholar]
- Yoshida, S., Ushioda, K., & Ågren, J. (2014). Kinetic model of the γ to α phase transformation at grain boundaries in boron-bearing low-alloy steel. ISIJ International, 54(3), 685–692. http://doi.org/10.2355/isijinternational.54.685 [CrossRef] [Google Scholar]
- Da Rosaa, G., Maugis, P., Portavocea, A., Drillet, J., Vallec, N., Lentzenc, E., & Hoummada, K. (2020). Grain-boundary segregation of boron in high-strength steel studied by nano-SIMS and atom probe tomography. Acta Materialia, (182), 226–234. https://doi.org/10.1016/j.actamat.2019.10.029 [CrossRef] [Google Scholar]
- Qi, L., Khachaturyan, A.G., & Morris Jr, J.W. (2014). The microstructure of dislocated martensitic steel: Theory. Acta Materialia, (76), 23–39. https://doi.org/10.1016/j.actamat.2014.04.038 [CrossRef] [Google Scholar]
- Wang, J., Enomoto, M., & Shang, C. (2021). First-principles study on the P-induced embrittlement and de-embrittling effect of B and C in ferritic steels. Acta Materialia, (219), 117260. https://doi.org/10.1016/j.actamat.2021.117260 [CrossRef] [Google Scholar]
- Wang, J., Yang, X., Qian, R., Rong, X., Xie, Z., & Shang, C. (2022). First-principles study of B segregation at austenite grain boundary and its effect on the hardenability of low-alloy steels. Metals, 12(12), 2006. https://doi.org/10.3390/met12122006 [CrossRef] [Google Scholar]
- Shigesato, G., Fujishiro, T., & Hara, T. (2012). Boron segregation to austenite grain boundary in low alloy steel measured by aberration corrected STEM–EELS. Materials Science and Engineering: A, (556), 358–365. https://doi.org/10.1016/j.msea.2012.06.099 [CrossRef] [Google Scholar]
- Luitjohan, K., Krane, M., & Johnson, D. (2020). Effect of solute elements on boron segregation in boron-containing steels. ISIJ International, 60(1), 92–98. https://doi.org/10.2355/isijinternational.ISIJINT-2019-258 [CrossRef] [Google Scholar]
- Jiang, D.E., & Carter, E.A. (2003). Carbon dissolution and diffusion in ferrite and austenite from first principles. Physical Review B, (67), 214103. https://doi.org/10.1103/PhysRevB.67.214103 [CrossRef] [Google Scholar]
- Mambetaliyeva, A.R., Mamyrbayeva, K.K., Turysbekov, D.K., Dauletbakov, T.S., & Barmenshinova, M.B. (2022). Investigation of the process of sulfiding of gold-arsenic containing ores and concentrates. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 51–56. https://doi.org/10.33271/nvngu/2022-3/051 [CrossRef] [Google Scholar]
- He, S., Scheiber, D., Jechtl, T., Moitzi, F., Peil, O., Romaner, L., Zamberger, S., PovodenKaradeniz, E., Razumovskiy, V., & Ruban, A.V. (2022). Solubility and segregation of B in paramagnetic fcc Fe. Physical Review Materials, (6), 023604. https://doi.org/10.1103/PhysRevMaterials.6.023604 [CrossRef] [Google Scholar]
- Huang, F., Li, J., & Zang, R. (2024). Effect of boron on microstructure and mechanical properties of Al-killed high-strength low-alloy steel. Ironmaking & Steelmaking: Processes, Products and Applications, 51(6). https://doi.org/10.1177/03019233241248247 [Google Scholar]
- Ma, Y.Q., Jin, J.E., & Lee, Y.-K. (2015). A repetitive thermomechanical process to produce nanocrystalline in a metastable austenitic steel. Scripta Materialia, 52(12), 1311–1315. https://doi.org/10.1016/j.scriptamat.2005.02.018 [CrossRef] [Google Scholar]
- Yuan, Q., Xu, G., Liu, M., Hu, H.J., & Tian, J.J. (2019). Effects of rolling temperature on the microstructure and mechanical properties in an ultrafine-grained low-carbon steel. Steel Research International, 90(2), 1800318. https://doi.org/10.1002/srin.201800318 [CrossRef] [Google Scholar]
- Yuan, Q., Ren, J., Mo, J., Zhang, Z., Tang, E., Xu, G., & Xue., Z. (2023). Effects of rapid heating on the phase transformation and grain refinement of a low-carbon microalloyed steel. Journal of Materials Research and Technology, (23), 3756–3771. https://doi.org/10.1016/j.jmrt.2023.02.018 [CrossRef] [Google Scholar]
- Toshioka, Y. (1985). Heat treatment deformation of steel products. Materials Science and Technology, 1(10), 883–892. https://doi.org/10.1179/mst.1985.1.10.883 [CrossRef] [Google Scholar]
- Filonenko, N.Yu, Babachenko, A.I., Kononenko, G.A., & Safronova, O.A. (2022). Influence of the contents of chemical elements and the procedure of deformation and heat treatment on the formation of phase composition of wheel steel. Materials Science, 58(2), 190–195. https://doi.org/10.1007/s11003-022-00648-0 [CrossRef] [Google Scholar]
- Lozynskyi, V., Trembach, B. Hossain, M.M., Kabir, M.H., Silchenko, Y., Krbata, M., Sadovyi, K., Kolomiitsev, O., & Ropyak, L. (2024). Prediction of phase composition and mechanical properties Fe-Cr-C-B-Ti-Cu hardfacing alloys: Modeling and experimental validations. Heliyon, 10(3), E25199. https://doi.org/10.1016/j.heliyon2024.e25199 [CrossRef] [PubMed] [Google Scholar]
- Ivanov, I.V., Emurlaev, K.I., Lazurenko, D.V., Stark, A., & Bataev, I.A. (2020). Rearrangements of dislocations during continuous heating of deformed β-TiNb alloy observed by in-situ synchrotron X-ray diffraction. Materials Characterization, (166), 110403. https://doi.org/10.1016/j.matchar.2020.110403 [CrossRef] [Google Scholar]
- Forouzanmehr, N., Nili-Ahmadabadi, M., & Bönisch, M. (2016). The analysis of severely deformed pure Fe structure aided by X -ray diffraction profile. The Physics of Metals and Metallography, (117), 624–633. https://doi.org/10.1134/S0031918X16060077 [CrossRef] [Google Scholar]
- Vlasova, E., (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5(5(83)), 33–39. https://doi.org/10.15587/1729-4061.2016.79559 [CrossRef] [Google Scholar]
- Kerber, M., Spieckermann, F., Schuster, R., Joni, B., Schell, N., & Schafler, E. (2019). In-situ synchrotron profile analysis after high-pressure torsion deformation. Crystals, 9(5), 232. https://doi.org/10.3390/cryst9050232 [CrossRef] [Google Scholar]
- Bhadeshia, H.K.D.H. (2020). Cementite. International Materials Reviews, 65(1), 1–27. https://doi.org/10.1080/09506608.2018.1560984 [CrossRef] [Google Scholar]
- Fu, W., Xiong., Y., Zhao, J., Li, Y., Furuhara, T., & Maki, T. (2005). Microstructural evolution of pearlite in eutectoid Fe-C alloys during severe cold rolling. Journal of Materials Science and Technology, 21(1), 25–27. [Google Scholar]
- Umemoto, M., Todaka, Y., & Tsuchiya, K. (2003). Mecanical properties of cementite and fabrication of artificial pearlite. Materials Science Forum, (426-432), 859–864. https://doi.org/10.4028/www.scientific.net/MSF.426-432.859 [CrossRef] [Google Scholar]
- Sauvage, X., & Ivanisenko, Y. (2007). The role of carbon segregation on nanocrystallisation of pearlitic steels processed by severe plastic deformation. Journal of Materials Science, (42), 16511621. https://doi.org/10.1007/s10853-006-0750-z [Google Scholar]
- Filonenko, N.Yu. (2019). Solubility of boron and carbon in ferrite of the Fe-B-C system alloys. East European Journal of Physics, (2), 52–57. https://doi.org/10.26565/2312-4334-2019-2-08 [Google Scholar]
- Filonenko, N.Yu. & Galdina, О.M. (2016). Effect of carbon on the physical and structural properties of boride Fe2B. Physics and Chemistry of Solid State, 17(2), 251–255. https://doi.org/10.15330/pcss.17.2.251-255 [CrossRef] [Google Scholar]
- Okamoto, H. (2004). B-Fe (boron-iron). Journal of Phase Equilibria and Diffusion, 25(3), 297–298. https://doi.org/10.1007/s11669-004-0128-3 [CrossRef] [Google Scholar]
- Spicer, J.B. (2008). Nonlinear effects on impurity segregation in edge dislocation strain fields. Scripta Materialia, 59(4), 377–380. https://doi.org/10.1016/j.scriptamat.2008.01.061 [CrossRef] [Google Scholar]
- Maugis, P., & Hoummada, K. (2016). A methodology for the measurement of the interfacial excess of solute at a grain boundary. Scripta Materialia, (120), 90–93. https://doi.org/10.1016/j.scriptamat.2016.04.005 [CrossRef] [Google Scholar]
- Kaur, I., & Gust, W. (1989). Fundamentals of grain and interphase boundary diffusion. Stuttgart, Germany: Ziegler Press, 422 p. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.