Open Access
Issue
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
Article Number 01022
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202456701022
Published online 09 September 2024
  1. Fedko, M.B., Muzyka, I.O., Pysmennyi, S.V., & Kalinichenko, O.V. (2019). Determination of drilling and blasting parameters considering the stress-strain state of rock ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 37–41. https://doi.org/10.29202/nvngu/2019-1/20 [CrossRef] [Google Scholar]
  2. Petlovanyi, M. (2016). Influence of configuration chambers on the formation of stress in multimodulus mass. Mining of Mineral Deposits, 10(2), 48–54. https://doi.org/10.15407/mining10.02.048 [CrossRef] [Google Scholar]
  3. Pysmennyi, S., Chukharev, S., Khavalbolot, K., Bondar, I., & Ijilmaa, J. (2021). Enhancement of the technology of mining steep ore bodies applying the “floating” crown. E3S Web of Conferences, (280), 08013. https://doi.org/10.1051/e3sconf/202128008013 [CrossRef] [EDP Sciences] [Google Scholar]
  4. Kushnerov, I., Chukharev, S., Maksymov, I., Fedorenko, S., & Kryvenko, A. (2024). Innovative technology for mining parallel superimposed inclined tabular deposits. IOP Conference Series: Earth and Environmental Science, 1348(1), 012047. http://dx.doi.org/10.1088/1755-1315/1348/1/012047 [CrossRef] [Google Scholar]
  5. Vladyko, O., Kononenko, M., & Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 147–150. https://doi.org/10.1201/b13157-26 [Google Scholar]
  6. Morkun, V., Morkun, N., & Tron, V. (2015). Identification of control systems for ore-processing industry aggregates based on nonparametric kernel estimators. Metallurgical and Mining Industry, 7(1), 14–17. [Google Scholar]
  7. Wagner, H., & Moser, P. (2020). Rock and rock mass properties prediction based on drilling parameters for underground drift blasting. Rock Fragmentation by Blasting, 415–423. https://doi.org/10.1201/9781003078104-57 [Google Scholar]
  8. Morkun, V., & Tron, V. (2014). Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry, 6(6), 4–7. [Google Scholar]
  9. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). The adaptive control for intensity of ultrasonic influence on iron ore pulp. Metallurgical and Mining Industry, 6(6), 8–11. [Google Scholar]
  10. Saik, P., Rysbekov, K., Kassymkanova, K.K., Lozynskyi, V., Kyrgizbayeva, G., Moldabayev, S., Babets, D., & Salkynov, A. (2024). Investigation of the rock mass state in the near-wall part of the quarry and its stability management. Frontiers in Earth Science, (12), 1395418. https://doi.org/10.3389/feart.2024.1395418 [CrossRef] [Google Scholar]
  11. Malanchuk, Z., Korniyenko, V., Malanchuk, Y., Khrystyuk, A., & Kozyar, M. (2020). Identification of the process of hydromechanical extraction of amber. E3S Web of Conferences, (166), 02008. https://doi.org/10.1051/e3sconf/202016602008 [CrossRef] [EDP Sciences] [Google Scholar]
  12. Moshynskyi, V., Zhomyruk, R., Vasylchuk, O., Semeniuk, V., Okseniuk, R., Rysbekov, K., & Yelemessov, K. (2021). Investigation of technogenic deposits of phosphogypsum dumps. E3S Web of Conferences, (280), 08008. https://doi.org/10.1051/e3sconf/202128008008 [CrossRef] [EDP Sciences] [Google Scholar]
  13. Mambetaliyeva, A.R., Mamyrbayeva, K.K., Turysbekov, D.K., Dauletbakov, T.S., & Barmenshinova, M.B. (2022). Investigation of the process of sulfiding of gold-arsenic containing ores and concentrates. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 51–56. https://doi.org/10.33271/nvngu/2022-3/051 [CrossRef] [Google Scholar]
  14. Semerikov, S.O., Chukharev, S.M., Sakhno, S.I., Striuk, A.M., Iatsyshin, A.V., Klimov, S.V., Osadchyi, V.V., Vakaliuk, T.A., Nechypurenko, P.P., Bondarenko, O.V., Danylchuk, H.B., & Artemchuk, V.O. (2023). 4th International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters. IOP Conference Series: Earth and Environmental Science, 1254(1), 011001. https://doi.org/10.1088/1755-1315/1254/1/011001 [CrossRef] [Google Scholar]
  15. Kalinichenko, O., Fedko, M., Kushnerov, I., & Hryshchenko, M. (2019). Muck drawing by inclined two-dimensional flow. E3S Web of Conferences, (123), 01015. https://doi.org/10.1051/e3sconf/201912301015 [CrossRef] [EDP Sciences] [Google Scholar]
  16. Stupnik, M., & Kalinichenko, O. (2018). Investigation of muck drawing in blocks with trapezoid sills. E3S Web of Conferences, (60), 00021. https://doi.org/10.1051/e3sconf/20186000021 [CrossRef] [EDP Sciences] [Google Scholar]
  17. Plevako, V., Potapov, V., Kycenko, V., Lebedynecj, I., & Pedorych, I. (2016). Analytical study of the bending of isotropic plates, inhomogeneous in thickness. Eastern-European Journal of Enterprise Technologies, 4(7(82)), 10–16. https://doi.org/10.15587/1729-4061.2016.75052 [CrossRef] [Google Scholar]
  18. Petlovanyi, M., Ruskykh, V., Zubko, S., & Medianyk, V. (2020). Dependence of the mined ores quality on the geological structure and properties of the hanging wall rocks. E3S Web of Conferences, (201), 01027. https://doi.org/10.1051/e3sconf/202020101027 [CrossRef] [EDP Sciences] [Google Scholar]
  19. Kuz’menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Annual Scientific-Technical Colletion – Mining of Mineral Deposits, 45–48. https://doi.org/10.1201/b16354-10 [CrossRef] [Google Scholar]
  20. Aitkazinova, S.K., Derbisov, K.N., Donenbayeva, N.S., Nurpeissova, M., & Levin, E. (2020). Preparing solutions based on industrial waste for fractured surface strengthening. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 5(443), 13. https://doi.org/10.32014/2020.2518-170X.99 [Google Scholar]
  21. Skidin, I.E., Vodennikova, O.S., Saithareiev, L.N., Baboshko, D.Y., & Barmenshinova, M.B. (2023). Technology of forming a wear-resistant thermite alloy layer based on the Fe-Cr-C system by self-propagating high-temperature synthesis. IOP Conference Series: Earth and Environmental Science, 1254(1), 012008. https://doi.org/10.1088/1755-1315/1254/1/012008 [CrossRef] [Google Scholar]
  22. Khomenko, O.Ye. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 44–54. [Google Scholar]
  23. Duczmal-Czernikiewicz, A., Baibatsha, A., Bekbotayeva, A., Omarova, G., & Baisalova, A. (2021). Ore minerals and metal distribution in tailings of sediment-hosted stratiform copper deposits from Poland and Kazakhstan. Minerals, 11(7), 752. https://doi.org/10.3390/min11070752 [CrossRef] [Google Scholar]
  24. Kuzmenko, O., Petlyovanyy, M., & Heylo, A. (2014). Application of fine-grained binding materials in technology of hardening backfill construction. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 465–469. https://doi.org/10.1201/b17547-79 [Google Scholar]
  25. Kononenko, M., Khomenko, O., Sadovenko, I., Sobolev, V., Pazynich, Y., & Smoliński, A. (2023). Managing the rock mass destruction under the explosion. Journal of Sustainable Mining, 22(3), 240. https://doi.org/10.46873/2300-3960.1391 [CrossRef] [Google Scholar]
  26. Portnov, V.S., Yurov, V.M., & Mausymbaeva, A.D. (2018). Influence of surface properties of minerals on rebellious ore disintegration. Journal of Mining Science, (54), 681–689. [CrossRef] [Google Scholar]
  27. Zhienbayev, A., Balpanova, M., Asanova, Zh., Zharaspaev, M., Nurkasyn, R., & Zhakupov, B. (2023). Analysis of the roof span stability in terms of room-and-pillar system of ore deposit mining. Mining of Mineral Deposits, 17(1), 129–137. https://doi.org/10.33271/mining17.01.129 [CrossRef] [Google Scholar]
  28. Pysmennyi, S., Chukharev, S., Kyelgyenbai, K., Mutambo, V., & Matsui, A. (2022). Iron ore underground mining under the internal overburden dump at the PJSC “Northern GZK”. IOP Conference Series: Earth and Environmental Science, 1049(1), 012008. https://doi.org/10.1088/1755-1315/1049/1/012008 [CrossRef] [Google Scholar]
  29. Stupnik, M., Kalinichenko, V., Fedko, M., Pysmennyi, S., Kalinichenko, O., & Pochtarev, A. (2022). Methodology enhancement for determining parameters of room systems when mining uranium ore in the SE “SkhidGZK” underground mines, Ukraine. Mining of Mineral Deposits, 16(2), 33–41. https://doi.org/10.33271/mining16.02.033 [CrossRef] [Google Scholar]
  30. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 193–197. https://doi.org/10.1201/b11329-31 [Google Scholar]
  31. Malakhov, G.M. (1990). Upravlenie gornym davleniem pri razrabotke rudnykh mestorozhdeniy Krivorozhskogo basseyna. Kyiv, Ukraina: Naukova dumka, 204 s [Google Scholar]
  32. Kononenko, M., Khomanko, O., Cabana, E., Mirek A., Dyczko A., Prostański, D., & Dychkovskyi, R. (2023). Using the methods to calculate parameters of drilling and + blasting operations for emulsion explosives. Acta Montanistica Slovaca, 28(v28/i3), 655–667. https://doi.org/10.46544/ams.v28i3.10 [CrossRef] [Google Scholar]
  33. Kononenko, M., Khomenko, O., Kovalenko, I., & Savchenko, M. (2021). Control of density and velocity of emulsion explosives detonation for ore breaking. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 69–75. https://doi.org/10.33271/nvngu/2021-2/069. [CrossRef] [Google Scholar]
  34. Khomenko, O.Ye, Kononenko, M.M., & Kosenko, A.V. (2022). Protsesy pidzemnoi rozrobky rudnykh rodovyshch. Dnipro, Ukraina: NTU “Dniprovska politekhnika”, 206 s. https://doi.org/10.33271/dut.002 [Google Scholar]
  35. Jones, O., Aspandiar, M., Dugdale, A., Leggo, N., Glacken, I., & Smith, B. (2019). Mineral resources and ore reserves estimation. The Business of Mining, 121–179. https://doi.org/10.1201/9780429057540-5 [CrossRef] [Google Scholar]
  36. Dychkovskyi, R., Vladyko, O., Maltsev, D., Cabana, E.C. (2018). Some aspects of the compatibility of mineral mining technologies. Rudarsko-Geološko-Naftni Zbornik, 33(4), 73–82. https://doi.org/10.17794/rgn.2018.4.7 [CrossRef] [Google Scholar]
  37. Yousufi, A., Ahmadi, H., Bekbotayeva, A., Arshamov, Y., Baisalova, A., Omarova, G., & Pekkan, E. (2023). Integration of remote sensing and field data in ophiolite investigations: A case study of Logar ophiolite complex, SE Afghanistan. Minerals, 13(2), 234. https://doi.org/10.3390/min13020234 [CrossRef] [Google Scholar]
  38. Shults, R., Seitkazina, G., & Soltabayeva, S. (2023). The features of sports complex “SUNKAR” monitoring by terrestrial laser scanning. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (48), 105–110. https://doi.org/10.5194/isprs-archives-XLVIII5-W2-2023-105-2023 [CrossRef] [Google Scholar]
  39. Kononenko, M., Khomenko, O., Kosenko, A., Myronova, I., Bash, V., & Pazynich, Y. (2024). Raises advance using emulsion explosives. E3S Web of Conferences, (526), 01010. https://doi.org/10.1051/e3sconf/202452601010 [CrossRef] [EDP Sciences] [Google Scholar]
  40. Remezova, O., Komsky, M., Komliev, O., Chukharev, S., & Vasylenko, S. (2023). Study of valuable impurities of ore-forming titanium minerals in the Ukraine. Inzynieria Mineralna, (1), 189–194. https://doi.org/10.29227/IM-2023-01-24 [Google Scholar]
  41. Falshtynskyi, V., Dychkovskyi, R., Khomenko, O., & Kononenko, M. (2020). On the formation of a mine-based energy resource complex. E3S Web of Conferences, (201), 01020. https://doi.org/10.1051/e3sconf/202020101020 [CrossRef] [EDP Sciences] [Google Scholar]
  42. Hussan, B., Takhanov, D., Kuzmin, S., & Abdibaitov, S. (2021). Research into influence of drillingand-blasting operations on the stability of the Kusmuryn open-pit sides in the Republic of Kazakhstan. Mining of Mineral Deposits, 15(3), 130–136. https://doi.org/10.33271/mining15.03.130 [CrossRef] [Google Scholar]
  43. Hussan, B., Lozynska, M.I., Takhanov, D.K., Oralbay, A.O., & Kuzmin, S.L. (2021). Assessing the quality of drilling-and-blasting operations at the open pit limiting contour. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 42–48. https://doi.org/10.33271/nvngu/2021-6/042 [CrossRef] [Google Scholar]
  44. Sobczyk, W., Perny, K.C.I., Sobczyk, E.J. (2021). Assessing the real risk of mining industry environmental impact. Case study. Inzynieria Mineralna, 1(1), 33–41. https://doi.org/10.29227/IM-2021-01-05 [Google Scholar]
  45. Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Annual Scientific-Technical Colletion – Mining of Mineral Deposit, 231–235. https://doi.org/10.1201/b16354-43 [CrossRef] [Google Scholar]
  46. Kononenko, M., Khomenko, O., Kovalenko, I., Kosenko, A., Zahorodnii, R., & Dychkovskyi, R. (2023). Determining the performance of explosives for blasting management. Rudarsko Geolosko Naftni Zbornik, 38(3), 19–28. https://doi.org/10.17794/rgn.2023.3.2 [CrossRef] [Google Scholar]
  47. Panchenko, V., Sobko, B., Lotous, V., Vinivitin, D., & Shabatura, V. (2021). Openwork scheduling for steep-grade iron-ore deposits with the help of near-vertical layers. Mining of Mineral Deposits, 15(1), 87–95. https://doi.org/10.33271/mining15.01.087. [CrossRef] [Google Scholar]
  48. Zhanchiv, B., Rudakov, D., Khomenko, O., & Tsendzhav, L. (2013). Substantiation of mining parameters of Mongolia uranium deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 10–18. [Google Scholar]
  49. Khomenko, O., Rudakov, D., Lkhagva, T., Sala, D., Buketov, V., & Dychkovskyi, R. (2023). Managing the horizon-oriented in-situ leaching for the uranium deposits of Mongolia. RudarskoGeološko-Naftni Zbornik, 38(5), 49–60. https://doi.org/10.17794/rgn.2023.5.5 [CrossRef] [Google Scholar]
  50. Issayeva, L., Togizov, K., Duczmal-Czernikiewicz, A., Kurmangazhina, M., & Muratkhanov, D. (2022). Ore-controlling factors as the basis for singling out the prospective areas within the Syrymbet rare-metal deposit, Northern Kazakhstan. Mining of Mineral Deposits, 16(2), 14–21. https://doi.org/10.33271/mining16.02.014 [CrossRef] [Google Scholar]
  51. Lozynskyi, V., Yussupov, K., Rysbekov, K., Rustemov, S., & Bazaluk, O. (2024). Using sectional blasting to improve the efficiency of making cut cavities in underground mine workings. Frontiers in Earth Science, (12), 1366901. https://doi.org/10.3389/feart.2024.1366901 [CrossRef] [Google Scholar]
  52. Zeylik, B., Arshamov, Y., Baratov, R., & Bekbotayeva, A. (2021). New technology for mineral deposits prediction to identify prospective areas in the Zhezkazgan ore region. Mining of Mineral Deposits, 15(2), 134–142. https://doi.org/10.33271/mining15.02.134 [CrossRef] [Google Scholar]
  53. Rymarchuk, B.I. (2007). Rozrobka resursozberihaiuchoi tekhnolohii pidzemnoi vidbiiky mitsnykh i nadto mitsnykh zaliznykh rud. PhD Thesis. Kryvyi Rih, Ukraina: KTU, 284 s. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.