Open Access
Issue |
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
|
|
---|---|---|
Article Number | 01028 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/e3sconf/202456701028 | |
Published online | 09 September 2024 |
- Bondarenko, V., Salieiev, I., Kovalevska, I., Chervatiuk, V., Malashkevych, D., Shyshov, M., & Chernyak, V. (2023). A new concept for complex mining of mineral raw material resources from DTEK coal mines based on sustainable development and ESG strategy. Mining of Mineral Deposits, 17(1), 1–16. https://doi.org/10.33271/mining17.01.001 [CrossRef] [Google Scholar]
- Salieiev, I. (2024). Organization of processes for complex mining and processing of mineral raw materials from coal mines in the context of the concept of sustainable development. Mining of Mineral Deposits, 18(1), 54–66. https://doi.org/10.33271/mining18.01.054 [CrossRef] [Google Scholar]
- Haidai, O., Ruskykh, V., Ulanova, N., Prykhodko, V., Cabana, E.C., Dychkovskyi, R., Howaniec, N., & Smolinski, A. (2022). Mine field preparation and coal mining in Western Donbas: energy security of Ukraine – A case study. Energies, 15(13), 4653. https://doi.org/10.3390/en15134653 [CrossRef] [Google Scholar]
- Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining, 1–523 p. Book. CRC Press. https://doi.org/10.1201/b17547 [Google Scholar]
- Tiess, G., Sokolova, I., & Klochkov, S. (2021). Effective mineral policy as a key factor for sustainable economy. Ukrainian Geologist, 1-2(44-45), 34–40. https://doi.org/10.53087/ug.2021.1-2(44-45).238854 [CrossRef] [Google Scholar]
- Dyczko, A. (2023). Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture. Journal of Sustainable Mining, 22(1), 2–19. https://doi.org/10.46873/2300-3960.1371 [CrossRef] [Google Scholar]
- Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining. 1–607 p. Book. CRC Press. https://doi.org/10.1201/b19901 [Google Scholar]
- Dubinski, J., Stec, K., & Bukowska, M. (2019). Geomechanical and tectonophysical conditions of mining-induced seismicity in the Upper Silesian Coal Basin in Poland: A case study. Archives of Mining Sciences, 64(1), 163–180. https://doi.org/10.24425/ams.2019.126278 [Google Scholar]
- Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical Processes During Underground Mining, 1–238 p. Book. CRC Press. https://doi.org/10.1201/b13157 [Google Scholar]
- Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining, 41–44. https://doi.org/10.1201/b13157-8 [Google Scholar]
- Dreus, A.Yu., Sudakov, A.K., Kozhevnikov, A.A., & Vakhalin, Yu.N. (2016). Study on thermal strength reduction of rock formation in the diamond core drilling process using pulse flushing mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 5–10. [Google Scholar]
- Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2013). Mining of Mineral Deposits. London: CRC Press/Balkema, 382 p. https://doi.org/10.1201/b16354 [Google Scholar]
- Kopacz, M., Kulpa, J., Galica, D., Dyczko, A., & Jarosz, J. (2019). Economic valuation of coal deposits – The value of geological information in the resource recognition process. Resources Policy, (63), 101450. https://doi.org/10.1016/j.resourpol.2019.101450 [CrossRef] [Google Scholar]
- Ahaiev, R., Prytula, D., Kliuiev, E., Cabana, E., & Kabakova, L. (2020). The determination of the influence degree of mining-geological and mining-technical factors on the safety of the degassing system. E3S Web of Conferences, (168), 00040. https://doi.org/10.1051/e3sconf/202016800040 [CrossRef] [EDP Sciences] [Google Scholar]
- Kovalevska, I., Symanovych, G., & Fomychov, V. (2013). Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 159–163. https://doi.org/10.1201/b16354-27 [Google Scholar]
- Ratov, B.T., Fedorov, B.V., Syzdykov, A.Kh., Zakenov, S.T., & Sudakov, A.K. (2021). The main directions of modernization of rock-destroying tools for drilling solid mineral resources. 21st International Multidisciplinary Scientific GeoConference SGEM 2021. Section Exploration & Mining, 503–514. https://doi.org/10.5593/sgem2021/l.l/s03.062 [Google Scholar]
- Svietkina, O., Bas, K., Boruk, S., Klishchenko, R., Yehurnov, O., Haddad, J., & Khodos, O. (2021). Composite Сarbonaceous Сoal-Water Suspensions. Materials Science Forum, 1045, 212–225. https://doi.org/10.4028/www.scientific.net/msf.1045.212 [CrossRef] [Google Scholar]
- Smoliński, A., Malashkevych, D., Petlovanyi, M., Rysbekov, K., Lozynskyi, V., & Sai, K. (2022). Research into impact of leaving waste rocks in the mined-out space on the geomechanical state of the rock mass surrounding the longwall face. Energies, 15(24), 9522. https://doi.org/10.3390/en15249522 [CrossRef] [Google Scholar]
- Bondarenko, V., Kovalevs’ka, I., & Fomychov, V. (2012). Features of carrying out experiment using finite-element method at multivariate calculation of “mine massif – combined support” system. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 7–14. https://doi.org/10.1201/b13157-4 [Google Scholar]
- Petlovanyi, M, Medianyk, V., Sai, K., Malashkevych, D., & Popovych, V. (2021). Geomechanical substantiation of the parameters for coal auger mining in the protecting pillars of mine workings during thin seams development. ARPN Journal of Engineering and Applied Sciences, 16(15), 1572–1582. [Google Scholar]
- Kovalevska, I., Samusia, V., Kolosov, D., Snihur, V., & Pysmenkova, T. (2020). Stability of the overworked slightly metamorphosed massif around mine working. Mining of Mineral Deposits, 14(2), 43–52. https://doi.org/10.33271/mining14.02.043 [CrossRef] [Google Scholar]
- Kovalevska, I., Vivcharenko, O., & Snigur, V. (2013). Specifics of percarbonic rock mass displacement in longwalls end areas and extraction workings. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 29–33. https://doi.org/10.1201/b16354-6 [CrossRef] [Google Scholar]
- Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 197–201. https://doi.org/10.1201/b16354-35 [CrossRef] [Google Scholar]
- Kyrgizbayeva, G., Nurpeisov, M., & Sarybayev, O. (2015). The monitoring of earth surface displacements during the subsoil development. New Developments in Mining Engineering: Theoretical and Practical Solutions of Mineral Resources Mining, 161–167. https://doi.org/10.1201/b19901-30 [Google Scholar]
- Aitkazinova, S.K., Nurpeisova, M.B., Kirgizbaeva, G.M., Milev, I. (2014). Geomechanical monitoring of the massif of rocks at the combined way of development of fields. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 2(2), 279–292. [Google Scholar]
- Dyczko, A., Kamiński, P., Jarosz, J., Rak, Z., Jasiulek, D., & Sinka, T. (2021). Monitoring of Roof bolting as an element of the project of the introduction of roof bolting in Polish coal minessase study. Energies, 15(1), 95. https://doi.org/10.3390/en15010095 [CrossRef] [Google Scholar]
- Bartoszek, S., Stankiewicz, K., Kost, G., Ćwikła, G., & Dyczko, A. (2021). Research on ultrasonic transducers to accurately determine distances in a coal mine conditions. Energies, 14(9), 2532. https://doi.org/10.3390/en14092532 [CrossRef] [Google Scholar]
- Griadushchiy, Y., Korz, P., Koval, O., Bondarenko, V., & Dychkovskiy, R. (2007). Advanced experience and direction of mining of thin coal seams in Ukraine. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum, 2007, 2–7. https://doi.org/10.1201/noe0415436700.ch1 [CrossRef] [Google Scholar]
- Kovalevs’ka, I., Fomychov V., Illiashov, M., & Chervatuk, V. (2012). The formation of the finiteelement model of the system “undermined massif-support of stope.” Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 83–90. https://doi.org/10.1201/b13157-14 [Google Scholar]
- Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elasticplastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341–348. [Google Scholar]
- Bondarenko, B., Kovalevska, I., Krasnyk, V., Chernyak, V., Haidai, O., Sachko, R., & Vivcharenko, I. (2024). Methodical principles of experimental-analytical research into the influence of pre-drilled wells on the intensity of gas-dynamic phenomena manifestations. Mining of Mineral Deposits, 18(1), 67–81. https://doi.org/10.33271/mining18.01.067 [CrossRef] [Google Scholar]
- Zhou, A., Hu, J., Wang, K., & Du, C. (2023). Analysis of fault orientation and gas migration characteristics in front of coal mining face: Implications for coal-gas outbursts. Process Safety and Environmental Protection, (177), 232–245. https://doi.org/10.1016/j.psep.2023.07.011 [CrossRef] [Google Scholar]
- Mineev, S.P., Prusova, A.A, & Kornilov, M.G. (2007). Aktivatsiya desorbtsii metana v ugol’nykh plastakh. Dnipropetrovsk, Ukraina: Veber, 252 s. [Google Scholar]
- Zhulay, Y., Zberovskiy, V., Angelovskiy, A., & Chugunkov, I. (2012). Hydrodynamic cavitation in energy-saving technological processes of mining sector. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 61–65. https://doi.org/10.1201/b13157-11 [Google Scholar]
- Simanovich, G., Serdiuk, V., Fomichov, I., & Bondarenko, V. (2007). Research of rock stresses and deformations around mining workings. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum, 2007, 47–56. https://doi.org/10.1201/noe0415436700.ch6 [CrossRef] [Google Scholar]
- Prykhodko, V., Ulanova, N., Haidai, O., & Klymenko, D. (2018). Mathematical modeling of tight roof periodical falling. E3S Web of Conferences, (60), 00020. https://doi.org/10.1051/e3sconf/20186000020 [CrossRef] [EDP Sciences] [Google Scholar]
- Bazaluk, O., Slabyi, O., Vekeryk, V., Velychkovych, A., Ropyak, L., & Lozynskyi, V. (2021). A technology of hydrocarbon fluid production intensification by productive stratum drainage zone reaming. Energies, 14(12), 3514. https://doi.org/10.3390/en14123514 [CrossRef] [Google Scholar]
- Zberovskyi, V., Ahaiev, R., Vlasenko, V., & Prytula, D. (2024). Hydrodynamic impact as a way of controlling the state of the coal-gas system: analysis and data processing. IOP Conference Series: Earth and Environmental Science, 1348(1), 012039. https://doi.org/10.1088/1755-1315/1348/1/012039 [CrossRef] [Google Scholar]
- Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 24–30. [Google Scholar]
- Kovalevska, I., Barabash, M., & Snihur, V. (2018). Development of a research methodology and analysis of the stress state of a parting under the joint and downward mining of coal seams. Mining of Mineral Deposits, 12(1), 76–84. https://doi.org/10.15407/mining12.01.076 [CrossRef] [Google Scholar]
- Piwniak, G.G., Bondarenko, V.I., Salli, V.I., Pavlenko, I.I., & Dychkovskiy, R.O. (2007). Limits to economic viability of extraction of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining International Mining Forum 2007, 129–132. https://doi.org/10.1201/noe041543670a0.ch16 [Google Scholar]
- Pivnyak, G., Dychkovskyi, R., Smirnov, A., & Cherednichenko, Y. (2013). Some aspects on the software simulation implementation in thin coal seams mining. Energy Efficiency Improvement of Geotechnical Systems, 1–10. https://doi.org/10.1201/b16355-2 [Google Scholar]
- Bondarenko, V., & Dychkovskiy, R. (2006). Methods of extraction of thin and rather thin coal seams in the works of the scientists of the Underground Mining Faculty (National Mining University). New Technological Solutions in Underground Mining International Mining Forum 2006, 21–25. [Google Scholar]
- Vlasov, S., Moldavanov, Y., Dychkovskyi, R., Cabana, E., Howaniec, N., Widera, K., & Smoliński, A. (2022). A generalized view of longwall emergency stop prevention (Ukraine). Processes, 10(5), 878. https://doi.org/10.3390/pr10050878 [CrossRef] [Google Scholar]
- Sdvizhkova, Ye.A., Babets, D.V., & Smirnov, A.V. (2014). Support loading of assembly chamber in terms of Western Donbas plough longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5). 26–32. [Google Scholar]
- Riazantsev, M.O., Nosach, O.K., Kodunov, B.O., & Riazantsev, O.M. (2010). Pro prychyny zmenshennia metanovydilennia z plasta za vysokykh shvydkostei posuvannia vyboiu. Problemy hirnychoi tekhnolohii, 116–124. [Google Scholar]
- Bazaluk, O., Sobolev, V., Molchanov, O., Burchak, O., Bezruchko, K., Holub, N., Tereshkova, O., Kulivar, V., Fedorenko, E., & Lozynskyi, V. (2024). Changes in the stability of coal microstructure under the influence of weak electromagnetic fields. Scientific Reports, (14), 1304. https://doi.org/10.1038/s41598-024-51575-w [CrossRef] [PubMed] [Google Scholar]
- Antoshchenko, M., Tarasov, V., Rudniev, R., & Zakharova, O. (2022). Using indices of the current industrial coal classification to forecast hazardous characteristics of coal seams. Mining of Mineral Deposits, 16(2), 7–13. https://doi.org/10.33271/mining16.02.007 [CrossRef] [Google Scholar]
- Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., & Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47), 74–78. [Google Scholar]
- Gazaliyev, A.M., Portnov, V.S., Kamarov, R.K., Maussymbayeva, A.D., & Yurov, V.M. (2015). Geophysical research of areas with increased gas content of coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 24–29. [Google Scholar]
- Serhiienko, O.I., & Serhiienko, L.V. (2022). Obhruntuvannia sposobu prohnozu vyvaloutvorennia porid pokrivli nad ochysnym vyboiem. Naukovyi visnyk DonNTU, 1(8)-2(9), 140–151. https://www.doi.org/10.31474/2415-7902-2022-1(8)-2(9)-140-151 [Google Scholar]
- Klochko, I.I., Lobkov, M.I., Serhiienko, O.I., & Serhiienko, L.V. (2010). Vplyv zsuviv porid pokrivli na hazovydilennia z vyroblenoho prostoru. Fizyko-tekhnichni problemy hirnychoho vyrobnytstva, (13), 103–108. [Google Scholar]
- Lobkov, M.I., Serhiienko, O.I., & Khalimendikov, Ye.M. (2010). Osoblyvosti formuvannia opornoho tysku pid chas vedennia ochysnykh robit. Visti Donetskoho hirnychoho instytutu, (1), 234–239. [Google Scholar]
- Yang, R., Li, Y., Guo, D., Yao, L., Yang, T., & Li, T. (2017). Failure Mechanism and Control Technology of Water-immersed Roadway in High-stress and Soft Rock in a Deep Mine. International Journal of Mining Science and Technology, 27(2), 245–252. https://doi.org/10.1016/j.ijmst.2017.01.010 [CrossRef] [Google Scholar]
- Xue, Y., Gao, F., Liu, X., & Liang, X. (2017). Permeability and Pressure Distribution Characteristics of the Roadway Surrounding Rock in the Damaged Zone of an Excavation. International Journal of Mining Science and Technology, 27(2), 211–219. https://doi.org/10.1016/j.ijmst.2017.01.003 [CrossRef] [Google Scholar]
- Dai, H., Li, P., Marzhan, N., Yan, Y., Yuan, C., Serik, T., Guo, J., Zhakypbek, Y., & Seituly, K. (2022). Subsidence control method by inversely-inclined slicing and upward mining for ultrathick steep seams. International Journal of Mining Science and Technology, 32(1), 103–112. https://doi.org/10.1016/j.ijmst.2021.10.003 [CrossRef] [Google Scholar]
- Ivadilinova, D.T., Issabek, T.K., Takhanov, D.K., & Yeskenova, G.B. (2023). Predicting underground mining impact on the earth’s surface. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 32–37. https://doi.org/10.33271/nvngu/2023-1/032 [CrossRef] [Google Scholar]
- Moldagozhina, M.K., Krupnik, L., Koptileuovich, Y.K., Mukhtar, E., & Roza, A. (2016). The system is “roof bolting-mountain”. International Journal of Applied Engineering Research, 11(21), 10454–10457. [Google Scholar]
- Nurpeisova, M.B., & Kurmanbaev, O.S. (2016). Laws of devolopment of geomechanical processes in the rock mass maykain mine. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(420), 109–115. [Google Scholar]
- Zhao, J., & Konietzky, H. (2020). Numerical analysis and prediction of ground surface movement induced by coal mining and subsequent groundwater flooding. International Journal of Coal Geology, (229), 103565. https://doi.org/10.1016/j.coal.2020.103565 [CrossRef] [Google Scholar]
- Zheng, M., Li, S., Zhao, H., Huang, X., & Qiu, S. (2021). Probabilistic analysis of tunnel displacements based on correlative recognition of rock mass parameters. Geoscience Frontiers, 12(4), 101136. https://doi.org/10.1016/j.gsf.2020.12.015 [CrossRef] [Google Scholar]
- Kovalevska, I.A., Bondarenko, V.I., Symanovych, H.A., Sheka, I.V., & Tsivka, Ye.S. (2022). Modeling the rational parameters for innovative fastening systems in mine workings using composite materials. 15th International Congress on Rock Mechanics and Rock Engineering & 72nd Geomechanics Colloquium – Challenges in Rock Mechanics and Rock Engineering, 1538–1543. [Google Scholar]
- Vu, T.T., & Do, S.A. (2023). Determination of the rock mass displacement zone by numerical modeling method when exploiting the longwall at the Nui Beo Coal Mine, Vietnam. Mining of Mineral Deposits, 17(1), 59–66. https://doi.org/10.33271/mining17.01.059 [CrossRef] [Google Scholar]
- Filatiev Symanovych, H., Lisovytska, I., Odnovol, M., Ahaiev, R., & Poimanov, S. (2024). Rationale and modeling of technology for complex bottom-hole zone de-stressing of gasdynamically active rock mass. Mining of Mineral Deposits, 18(2), 83–92. https://doi.org/10.33271/mining18.02.083 [CrossRef] [Google Scholar]
- Chetveryk, M., Bubnova, O., & Babiy, K. (2017). The rate of deformation development in the rock massif on the basis of surveying monitoring on the earth surface. Mining of Mineral Deposits, 11(1), 57–64. https://doi.org/10.15407/mining11.01.057 [CrossRef] [Google Scholar]
- Symanovych, A.M., Sribnyi, M.O., Malov, V.I., & Belinskyi, I.L. (1973). Udoskonalennia sposobiv okhorony pidhotovchykh vyrobok. Donetsk, Ukraina: Donbas, 121 s. [Google Scholar]
- Bondarenko, V., Kovalevska, I., Symanovych, H., Barabash, M., & Snihur, V. (2018). Assessment of parting rock weak zones under the joint and downward mining of coal seams. E3S Web of Conferences, (66), 03001. https://doi.org/10.1051/e3sconf/20186603001 [CrossRef] [EDP Sciences] [Google Scholar]
- Bondarenko, V., Salieiev, I., Kovalevska, I., Symanovych, H., & Shyshov, M. (2023). Substantiating the expedient route parameters for the location of the site outgassing wells in the Western Donbas conditions. IOP Conference Series: Earth and Environmental Science, (1348), 012032. https://doi.org/10.1088/1755-1315/1348/1/012032 [Google Scholar]
- Bondarenko, V., Salieiev, І., Symanovych, H., Kovalevska, І., & Shyshov, M. (2023). Substantiating the patterns of geomechanical factors influence on the shear parameters of the coal-overlaying formation requiring degassing at high advance rates of stoping faces in the Western Donbas. Inżynieria Mineralna, 1(1(51)), 23–32. http://doi.org/10.29227/IM-2023-01-03 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.