Open Access
Issue
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
Article Number 01029
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202456701029
Published online 09 September 2024
  1. Evans, I., & Pomeroy, C.D. (1966). The Size Distribution of Run-of-mine Coal. The Strength, Fracture and Workability of Coal, 143–158. https://doi.org/10.1016/b978-1-4831-9633-6.50011-6 [CrossRef] [Google Scholar]
  2. Parhusip, M., Ernawati, R., & Cahyadi, T.A. (2021). Evaluasi settling pond pada area Run of Mine (ROM). Jurnal Inovasi Pertambangan Dan Lingkungan, 1(1). https://doi.org/10.15408/jipl.v1i1.20705 [CrossRef] [Google Scholar]
  3. Dumbaugh, G.D. (2008). Burning unprepared “Run of Mine” coal to efficiently fire a stoker boiler. ASME 2008 Power Conference, (8), 55–61. https://doi.org/10.1115/power2008-60159 [CrossRef] [Google Scholar]
  4. Kicki, J., Dyczko, A. (2010). The concept of automation and monitoring of the production process in an underground mine. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 245–253. https://doi.org/10.1201/b11329-41 [Google Scholar]
  5. Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geolosko-Naftni Zbornik, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3.9 [CrossRef] [Google Scholar]
  6. Lewicka, D., Zarębska, J., Batko, R., Tarczydło, B., Wożniak, M., Cichoń, D., & Pec, M. (2023). Circular economy in the European Union. Circular Economy in the European Union: Organisational Practice and Future Directions in Germany, Poland and Spain, 21–267 https://doi.org/10.4324/9781003411239 [Google Scholar]
  7. Sarycheva, L. (2003). Using GMDH in ecological and socio-economical monitoring problems. Systems Analysis Modelling Simulation, 43(10), 1409–1414. https://doi.org/10.1080/02329290290024925 [CrossRef] [Google Scholar]
  8. Polyanska, A., Cichoń, D., Verbovska, L., Dudek, Sala, D., Martynets, V. (2022). Waste management skills formation in modern conditions: the example of Ukraine. Financial and Credit Activity: Problems of Theory and Practice, 4(45), 322–334. https://doi.org/10.55643/fcaptp.4.45.2022.3814 [CrossRef] [Google Scholar]
  9. Pivnyak, G., Dychkovskyi, R., Smirnov, A., & Cherednichenko, Y. (2013). Some aspects on the software simulation implementation in thin coal seams mining. Energy Efficiency Improvement of Geotechnical Systems, 1–10. https://doi.org/10.1201/b16355-2 [Google Scholar]
  10. Psyuk, V., & Polyanska, A. (2024). The usege of artificial intelligence in the activities of mining enterprises. E3S Web of Conferences, (526), 01016. https://doi.org/10.1051/e3sconf/202452601016 [CrossRef] [EDP Sciences] [Google Scholar]
  11. Dudek, M. (2012). Utilisation of simulation modelling to coordinate of distributed logistic resources. Congress Proceedings – CLC 2012: Carpathian Logistics Congress, 151–159 [Google Scholar]
  12. Dychkovskyi, R., Falshtynskyi, V., Ruskykh, V., Cabana, E., & Kosobokov, O. (2018). A modern vision of simulation modelling in mining and near mining activity. E3S Web of Conferences, (60), 00014. https://doi.org/10.1051/e3sconf/20186000014 [CrossRef] [EDP Sciences] [Google Scholar]
  13. Polyanska, A., Pazynich, Y., Mykhailyshyn, K., & Buketov, V. (2023). Energy transition: the future of energy on the base of smart specialization. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 89–95. https://doi.org/10.33271/nvngu/2023-4/089 [CrossRef] [Google Scholar]
  14. Dyczko, A., Kamiński, P., Jarosz, J., Rak, Z., Jasiulek, D., & Sinka, T. (2021). Monitoring of roof bolting as an element of the project of the introduction of roof bolting in Polish Coal Mines – Case study. Energies, 15(1), 95. https://doi.org/10.3390/en15010095 [CrossRef] [Google Scholar]
  15. Yousufi, A., Ahmadi, H., Bekbotayeva, A., Arshamov, Y., Baisalova, A., Omarova, G., & Pekkan, E. (2023). Integration of remote sensing and field data in ophiolite investigations: A case study of Logar ophiolite complex, SE Afghanistan. Minerals, 13(2), 234. https://doi.org/10.3390/min13020234 [CrossRef] [Google Scholar]
  16. Shults, R., Seitkazina, G., & Soltabayeva, S. (2023). The features of sports complex “SUNKAR” monitoring by terrestrial laser scanning. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (48), 105–110. https://doi.org/10.5194/isprs-archivesXLVIII5-W2-2023-105-2023 [CrossRef] [Google Scholar]
  17. Sala, D., & Bieda, B. (2019). Application of uncertainty analysis based on Monte Carlo (MC) simulation for life cycle inventory (LCI). Inżynieria Mineralna, 2(2). https://doi.org/10.29227/im2019-02-80 [Google Scholar]
  18. Dyczko, A. (2023). Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture. Journal of Sustainable Mining, 22(1), 2–19. https://doi.org/10.46873/2300-3960.1371 [CrossRef] [Google Scholar]
  19. Jeeves, A. (1975). The control of migratory labour on the South African gold mines in the era of Kruger and Milner. Journal of Southern African Studies, 2(1), 3–29. https://doi.org/10.1080/03057077508707940 [CrossRef] [Google Scholar]
  20. Kopacz, M., Malinowski, L., Kaczmarzewski, S., & Kamiński P. (2023). Optimizing mining production plan as a trade-off between resources utilization and economic targets in underground coal mines. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 36(4), 49–74. https://doi.org/10.24425/gsm.2020.133948 [Google Scholar]
  21. Galica, D., Malinowski, L., Kuchenbecker-Gacka, J., & Frycz, T. (2024). Predicting surface mining influences in an integrated mining design and planning system. E3S Web of Conferences, (526), 01018. https://doi.org/10.1051/e3sconf/202452601018 [CrossRef] [EDP Sciences] [Google Scholar]
  22. Kryj, K., Szafarczyk, J., & Baic, I. (2011). Problem ekonomicznych skutków urabiania pozapokładowej skały płonnej w kopalniach węgla kamiennego. Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska, (13), 1835–1846. [Google Scholar]
  23. Aitkazinova, S.K., Derbisov, K.N., Donenbayeva, N.S., Nurpeissova, M., & Levin, E. (2020). Preparing solutions based on industrial waste for fractured surface strengthening. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 5(443), 13. https://doi.org/10.32014/2020.2518-170X.99 [Google Scholar]
  24. Cichowlas, A., & Malinowski, L. (2024). Monitoring the share of barren rock in extracted Run-ofMine using digital deposit model and mine structural model – case study. E3S Web of Conferences, (526), 01006. https://doi.org/10.1051/e3sconf/202452601006 [CrossRef] [EDP Sciences] [Google Scholar]
  25. Bazaluk, O., Sadovenko, I., Zahrytsenko, A., Saik, P., Lozynskyi, V., & Dychkovskyi, R. (2021). Forecasting underground water dynamics within the technogenic environment of a mine field: Case study. Sustainability, 13(13), 7161. https://doi.org/10.3390/su13137161 [CrossRef] [Google Scholar]
  26. Kopacz, M., Kulpa, J., Galica, D., Dyczko, A., & Jarosz, J. (2019). Economic valuation of coal deposits – the value of geological information in the resource recognition process. Resources Policy, (63), 101450. https://doi.org/10.1016/j.resourpol.2019.101450 [CrossRef] [Google Scholar]
  27. Kowalczyk, D., & Kulpa, J. (2024). A new perspective on the geological prospection of the BzieDębina deposit, with an emphasis on the correlation of seams and coal quality parameters. E3S Web of Conferences, (526), 01020. https://doi.org/10.1051/e3sconf/202452601020 [CrossRef] [EDP Sciences] [Google Scholar]
  28. Sosnowski, P., Dyczko, A., & Kamiński, P. (2024). Quality management in a 3D geological model – reliability of predicted hard coal quality parameters. E3S Web of Conferences, (526), 01003. https://doi.org/10.1051/e3sconf/202452601003 [CrossRef] [EDP Sciences] [Google Scholar]
  29. Galica, D. (2023). Cyfrowy model geologiczny złoża jako narzędzie wspomagania decyzji w działalności kopalni węgla kamiennego. Kraków: Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, 203 p. [Google Scholar]
  30. Golda, K., Paszek, L., & Kulpa, J. (2024). Geological and technological viewpoint on 3D Deposit Model – examples of use in Pniówek Coal Mine. E3S Web of Conferences, (526), 01007. https://doi.org/10.1051/e3sconf/202452601007 [CrossRef] [EDP Sciences] [Google Scholar]
  31. Syskon 400 (2024). Ciągły pomiar parametrów jakościowych (popiół, wilgotność, kaloryczność) węgla kamiennego. Accessed: Jul. 09, 2024. Retrieved from https://www.syskon.eu/ [Google Scholar]
  32. Gabzdyl, W. (1994). Geologia złóż węgla. Warszawa: Polska Agencja Ekologiczna, 399 s. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.