Open Access
Issue
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
Article Number 00079
Number of page(s) 18
DOI https://doi.org/10.1051/e3sconf/202560100079
Published online 16 January 2025
  1. S. El Majaty, A. Touzani, Y. Kasseh, Circular Economy as an Important Lever to Reduce Greenhouse Gas Emissions: Case of an Electricity Distribution Company in Morocco, Nat. Environ. Pollut. Technol. 23, 819–828 (2024). [CrossRef] [Google Scholar]
  2. H. Dong, L. Zhang, Transition towards carbon neutrality: Forecasting Hong Kong’s buildings carbon footprint by 2050 using a machine learning approach, Sustain. Prod. Consum. 35, 633–642 (2023). [CrossRef] [Google Scholar]
  3. Bains, K. Sridhar, S.B. Dhull, P. Chawla, M. Sharma, P.K. Sarangi, V.K. Gupta, Circular bioeconomy in carbon footprint components of nonthermal processing technologies towards sustainable food system: A review, Trends Food Sci. Technol. 149, 104520 (2024). [CrossRef] [Google Scholar]
  4. Beisheim, K. Rahimi-Adli, S. Krämer, S. Engell, Energy performance analysis of continuous processes using surrogate models, Energy 183, 776–787 (2019). [CrossRef] [Google Scholar]
  5. Z. Geng, R. Zeng, Y. Han, Y. Zhong, H. Fu, Energy efficiency evaluation and energy saving based on DEA integrated affinity propagation clustering: Case study of complex petrochemical industries, Energy 179, 863–875 (2019). [CrossRef] [Google Scholar]
  6. L. Ye, P. Du, S. Wang, Industrial carbon emission forecasting considering external factors based on linear and machine learning models, J. Clean. Prod. 434, 140010 (2024). [CrossRef] [Google Scholar]
  7. P.R.X. do Carmo, J.V.L. do Monte, A.T. Filho, E. Freitas, M.F.F.S.L. Tigre, D. Sadok, J. Kelner, A data-driven model for the optimization of energy consumption of an industrial production boiler in a fiber plant, Energy 284, 129239 (2023). [CrossRef] [Google Scholar]
  8. T. Qiao, Adaptive optimization of thermal energy and information management in intelligent green manufacturing process based on neural network, Therm. Sci. Eng. Prog. 55, 102953 (2024). [CrossRef] [Google Scholar]
  9. P. Bangalore, L.B. Tjernberg, An artificial neural network approach for early fault detection of gearbox bearings, IEEE Trans. Smart Grid 6, 980–987 (2015). [CrossRef] [Google Scholar]
  10. M.A. Bermeo-Ayerbe, C. Ocampo-Martinez, J. Diaz-Rozo, Data-driven energy prediction modeling for both energy efficiency and maintenance in smart manufacturing systems, Energy 238, 121691 (2022). [CrossRef] [Google Scholar]
  11. S. Touzani, B. Ravache, E. Crowe, J. Granderson, Statistical change detection of building energy consumption: Applications to savings estimation, Energy Build. 185, 123–136 (2019). [CrossRef] [Google Scholar]
  12. Z. Shi, A. Chehade, A dual-LSTM framework combining change point detection and remaining useful life prediction, Reliab. Eng. Syst. Saf. 205, 107257 (2021). [CrossRef] [Google Scholar]
  13. T.P. Carvalho, F.A.A.M.N. Soares, R. Vita, R.P. Francisco, J.P. Basto, S.G.S. Alcalá, A systematic literature review of machine learning methods applied to predictive maintenance, Comput. Ind. Eng. 137, 106024 (2019). [CrossRef] [Google Scholar]
  14. M. Sega, Y. Xiao, Multivariate random forests, Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1, 80–87 (2011). [Google Scholar]
  15. A.K. Abbas, N.A. Al-haideri, A.A. Bashikh, Implementing artificial neural networks and support vector machines to predict lost circulation, Egypt. J. Pet. 28, 339–347 (2019). [CrossRef] [Google Scholar]
  16. G.P. Zhang, Neural Networks for Classification: A Survey (2013). [Google Scholar]
  17. S.H. Noh, Analysis of gradient vanishing of RNNs and performance comparison, Inf. 12 (2021). [Google Scholar]
  18. S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Comput. 9, 1735–1780 (1997). [CrossRef] [Google Scholar]
  19. J. Chung, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, arXiv:1412.3555v1 [cs.NE] (2014). [Google Scholar]
  20. N.R. Zhang, D.O. Siegmund, A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data, Biometrics 63, 22–32 (2007). [CrossRef] [PubMed] [Google Scholar]
  21. Truong, L. Oudre, N. Vayatis, ruptures: change point detection in Python (2018). [Google Scholar]
  22. P. Fryzlewicz, Wild Binary Segmentation for multiple change-point detection (2014). [Google Scholar]
  23. K. Yano, 11 Trend Filtering-Based Detection of Short-Term Slow Slip Events: Application to a GNSS Array in Southwest Japan, J. Geophys. Res.: Solid Earth (2022). [Google Scholar]
  24. R. Killick, P. Fearnhead, Optimal detection of changepoints with a linear computational cost (2014). [Google Scholar]
  25. Pagano, A predictive maintenance model using Long Short-Term Memory Neural Networks and Bayesian inference, Decis. Anal. J. 6, 100174 (2023). [CrossRef] [Google Scholar]
  26. L. De Simone, E. Caputo, M. Cinque, A. Galli, V. Moscato, S. Russo, G. Cesaro, V. Criscuolo, G. Giannini, LSTM-based failure prediction for railway rolling stock equipment, Expert Syst. Appl. 222, 119767 (2023). [CrossRef] [Google Scholar]
  27. Y. Jiang, P. Dai, P. Fang, R.Y. Zhong, X. Zhao, X. Cao, A2-LSTM for predictive maintenance of industrial equipment based on machine learning, Comput. Ind. Eng. 172 (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.