Open Access
Issue
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
Article Number 00106
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202560100106
Published online 16 January 2025
  1. K. Calvin et al., “IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.,” Jul. 2023, DOI: 10.59327/IPCC/AR6-9789291691647. [Google Scholar]
  2. C. M. Cherif, J. Díaz-Cassou, “Climate Change and Development in Morocco,” in Morocco’s Quest for Stronger and Inclusive Growth, 2023, p. 121. [Online]. Available: http://www.merriewood.com/gambia [Google Scholar]
  3. “Climate Risk Profile: Morocco (2021): The World Bank Group-Recherche.” https://climateknowledgeportal.worldbank.org/sites/default/files/2021-09/15725-WB_MoroccoCountryProfile-WEB.pdf (accessed Aug. 19, 2024). [Google Scholar]
  4. L. Stour and A. Agoumi, “Sécheresse climatique au Maroc durant les dernières décennies,” Hydroécologie Appliquée, vol. 16, pp. 215–232, 2008, DOI: 10.1051/HYDRO/2009003. [CrossRef] [EDP Sciences] [Google Scholar]
  5. H. Mannstein, “Surface energy budget, surface temperature and thermal inertia.,” Remote Sens. Appl. Meteorol. Climatol. Proc. NATO ASI, Dundee, 1986, 1987, DOI: 10.1007/978-94-009-3881-6_21. [Google Scholar]
  6. G. R. Diak and M. S. Whipple, “Improvements to models and methods for evaluating the land-surface energy balance and ‘effective’ roughness using radiosonde reports and satellite-measured ‘skin’ temperature data,” Agric. For. Meteorol., vol. 63, no. 3-4, pp. 189–218, 1993, DOI: 10.1016/0168-1923(93)90060-U. [CrossRef] [Google Scholar]
  7. A. Karnieli et al., “Use of NDVI and land surface temperature for drought assessment: Merits and limitations,” J. Clim., vol. 23, no. 3, pp. 618–633, Feb. 2010, DOI: 10.1175/2009JCLI2900.1. [CrossRef] [Google Scholar]
  8. K. M. De Beurs and G. M. Henebry, “Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan,” Remote Sens. Environ., vol. 89, no. 4, pp. 497–509, Feb. 2004, DOI: 10.1016/j.rse.2003.11.006. [CrossRef] [Google Scholar]
  9. K. S. Kumar, P. U. Bhaskar, and K. Padmakumari, “Estimation of Land Surface Temperature To Study Urban Heat Island Effect Using Landsat Etm+ Image,” Int. J. Eng. Sci. Technol., vol. 4, no. 02, pp. 771–778, 2012. [Google Scholar]
  10. A. J. Prata, C. V. Casellescoll, J. A. Sobrino, and C. Ottle, “Thermal remote sensing of land surface temperature from satellites: current status and future prospects,” Remote Sens. Rev., vol. 12, no. 3-4, pp. 175–224, 1995, DOI: 10.1080/02757259509532285. [CrossRef] [Google Scholar]
  11. H. R. Shwetha and D. N. Kumar, “Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN,” ISPRS J. Photogramm. Remote Sens., vol. 117, pp. 40–55, Jul. 2016, DOI: 10.1016/j.isprsjprs.2016.03.011. [CrossRef] [Google Scholar]
  12. Z. L. Li et al., “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ., vol. 131, pp. 14–37, 2013, DOI: 10.1016/j.rse.2012.12.008. [CrossRef] [Google Scholar]
  13. R. Azmi, A. Saadane, and I. Kacimi, “Estimation of spatial distribution and temporal variability of land surface temperature over Casablanca and the surroundings of the city using different Landat satellite sensor type (TM, ETM+ and OLI),” Int. J. Innov. Appl. Stud., vol. 11, no. 1, pp. 49–57, 2015, [Online]. Available: http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-15-006-02%0Ahttp://www.issr-journals.org/links/papers.php?journal=ijias&application=pdf&article=IJIAS-15-006-02%0Ahttps://lens.org/172-197-615-255-157 [Google Scholar]
  14. M. El Garouani, M. Amyay, A. Lahrach, and H. J. Oulidi, “Land Surface Temperature in Response to Land Use/Cover Change Based on Remote Sensing Data and GIS Techniques: Application to Saïss Plain, Morocco,” J. Ecol. Eng., vol. 22, no. 7, pp. 100–112, 2021, DOI: 10.12911/22998993/139065. [CrossRef] [Google Scholar]
  15. M. Taoufik, M. Laghlimi, and A. Fekri, “Comparison of land surface temperature before, during and after the COVID-19 lockdown using landsat imagery: A case study of Casablanca city, Morocco,” Geomatics Environ. Eng., vol. 15, no. 2, pp. 105–120, 2021, DOI: 10.7494/geom.2021.15.2.105. [CrossRef] [Google Scholar]
  16. A. Rahimi, Z. Khalil, A. Bouasria, I. El Mjiri, and M. Bounif, “Land Surface Temperature Responses to Land Use Land Cover Dynamics (District of Taroudant, Morocco),” p. 28, 2022, DOI: 10.3390/iecag2021-09726. [Google Scholar]
  17. A. Derdouri, Y. Murayama, and T. Morimoto, “Spatiotemporal Thermal Variations in Moroccan Cities: A Comparative Analysis,” Sensors, vol. 23, no. 13, 2023, DOI: 10.3390/s23136229. [CrossRef] [PubMed] [Google Scholar]
  18. M. C. Peel, B. L. Finlayson, and T. A. McMahon, “Updated world map of the Köppen-Geiger climate classification,” Hydrol. Earth Syst. Sci., vol. 11, no. 5, pp. 1633–1644, 2007, DOI: 10.5194/hess-11-1633-2007. [CrossRef] [Google Scholar]
  19. C. Wang, B. H. Tang, H. Wu, R. Tang, and Z. L. Li, “Estimation of downwelling surface longwave radiation under heavy dust aerosol sky,” Remote Sens., vol. 9, no. 3, 2017, DOI: 10.3390/rs9030207. [Google Scholar]
  20. L. He et al., “Research on the calculation model of mid-infrared reflectivity of vegetation based on VIIRS data,” https://doi.org/10.1117/12.3032215, vol. 13170, pp. 340–347, Jun. 2024, DOI: 10.1117/12.3032215. [Google Scholar]
  21. T. Islam, G. C. Hulley, N. K. Malakar, R. G. Radocinski, P. C. Guillevic, and S. J. Hook, “A PhysicsBased Algorithm for the Simultaneous Retrieval of Land Surface Temperature and Emissivity From VIIRS Thermal Infrared Data,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 1, pp. 563–576, 2017, DOI: 10.1109/TGRS.2016.2611566. [CrossRef] [Google Scholar]
  22. R. Al-Ruzouq et al., “Spatial and Temporal Inversion of Land Surface Temperature along Coastal Cities in Arid Regions,” Remote Sens., vol. 14, no. 8, pp. 1–32, 2022, DOI: 10.3390/rs14081893. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.