Open Access
Issue
E3S Web Conf.
Volume 604, 2025
The 4th International Conference on Disaster Management (The 4th ICDM 2024)
Article Number 04007
Number of page(s) 7
Section Disaster Monitoring, Broadcasting, Early Warning and Information System
DOI https://doi.org/10.1051/e3sconf/202560404007
Published online 16 January 2025
  1. F. Göltenboth and W. Erdelen, Geography and Geology. In Ecology of Insular Southeast Asia: The Indonesian Archipelago, 3–16 (Elsevier Ltd. 2006) https://doi.org/10.1016/B978-044452739-4/50002-4 [CrossRef] [Google Scholar]
  2. R. Aryanti and M. Masrilayanti, State of the art of seismic risk and loss assessment in structures. E3S Web Conf. 331(6) 07013 (2021) https://doi.org/10.1051/e3sconf/202133107013 [CrossRef] [EDP Sciences] [Google Scholar]
  3. S.C. Chian, S.M. Wilkinson, J. K. Whittle, R. Mulyani, J. E. Alarcon, A. Pomonis, K. Saito, S. Fraser, K. Goda, J. Macabuag, M. Offord, A.C. Hunt-Raby, P. Sammonds, G. Franco, H. Stone, B. Ahmed, F.E. Hughes, N.K. Jirouskova, S. Kaminski, S. and J. Lopez, Lessons learnt from the 2009 Padang Indonesia, 2011 Tōhoku Japan and 2016 muisne Ecuador earthquakes. Frontiers in Built Environment, 5 (2019). https://doi.org/10.3389/fbuil.2019.00073. [CrossRef] [Google Scholar]
  4. A. Hakam and E. Suhelmidawati, Liquefaction due to September 30th 2009 earthquake in Padang. Procedia Engineering, 54, 140–146 (2013) https://doi.org/10.1016/j.proeng.2013.03.013 [CrossRef] [Google Scholar]
  5. H. Novasari, A. Hakam, A. Andriani, and S.R. Hape, Application of finite difference technique for solving consolidation problems of radial drainage case in air Tawar, Padang. AIP Conf. Proc. 2891, 060005 (2024). https://doi.org/10.1063/5.0201219 [CrossRef] [Google Scholar]
  6. M. Sudondo, A. Andriani, and A. Hakam, Geotechnical design of bored pile foundation on potential liquefaction site. AIP Conf. Proc. 2891, 060006 (2024). https://doi.org/10.1063/5.0208151 [CrossRef] [Google Scholar]
  7. A. Hakam, Laboratory Liquefaction Test of Sand Based on Grain Size and Relative Density. J. Eng. Technol. Sci., 48(3), 334-344 (2016) [CrossRef] [Google Scholar]
  8. A. Hakam, F.A. Ismail, and F. Fauzan, Liquefaction potential assessment based on laboratory test. International Journal of GEOMATE, 11(26) 2553-2557 (2016) [Google Scholar]
  9. A. Pramaditya, A., and T. F. Fathani, Physical modelling of earthquake-induced liquefaction on uniform soil deposit and settlement of earth structures. J. Civ. Eng. Forum, 1000, 85–96 (2020) [Google Scholar]
  10. A. Tohari, Seismic microzonation of soil amplification and liquefaction for Padang City. E3S Web Conf. 156, (2020) https://doi.org/10.1051/e3sconf/202015602008 [CrossRef] [EDP Sciences] [Google Scholar]
  11. A. Tohari, K. Sugianti and E. Soebowo, Liquefaction Potential at Padang City: A Comparison of Predicted and Observed Liquefactions During The 2009 Padang Earthquake. Ris. Geo. Tam 21(1) 7-19 (2011) http://dx.doi.org/10.14203/risetgeotam2011.v21.42. [CrossRef] [Google Scholar]
  12. R. W. Day, Geotechnical Earthquake Engineering Handbook, The McGraw-Hill Comp. (New York. USA, 2002) [Google Scholar]
  13. M. Jefferies, and K. Been, Soil Liquefaction: A Critical State Approach (2006). [Google Scholar]
  14. G.B. Laurie, B.H. Rebecca, and M.B. Charles, Liquefaction Hazard Mapping Statistical and Spatial Characterization of Susceptible Units. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 132:6 (2006). [Google Scholar]
  15. R.W. Boulanger, High overburden stress effects in liquefaction analyses. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 129(12), 10711082 (2003). [Google Scholar]
  16. H. Suprijanto, A. Hendrawan, and A. Nugraha, Potential study of the liquefaction hazard at the reclamation development site of I Gusti Ngurah Rai airport, Nusa Dua region, province of Bali. IOP Conference Series: Earth and Environmental Science. (2020). [Google Scholar]
  17. W. Rahayu, I. Yuliyanti, and E. Bahsan, Analysis of potential liquefaction using cone penetration test data and grain size distribution test with case study of liquefaction in Lolu Village. IOP Conference Series: Earth and Environmental Science. 622. [Google Scholar]
  18. A. Tohari, I. Muttaqien, and R. Syifa, Understanding of flow liquefaction phenomena in Palu City from shear wave velocity profiles. E3S Web of Conferences. 340. 01011 (2022). [CrossRef] [EDP Sciences] [Google Scholar]
  19. B.M. Adji, B. Istijono, A. Hakam, S. Andriani, and M. Anshari, Liquefaction disaster mitigation on railway corridors in Padang City, West Sumatra, IOP Conf. Ser.: Earth Environ. Sci. 708 012025 (2021). [CrossRef] [Google Scholar]
  20. R.N. Rahdiana, R. W. Wahyudin, G. Hasibuan, Wiyono, and W.P. Sollu, Atlas of Indonesian Liquefaction Susceptibility Zones, Ministry of Energy and Mineral Resources (Geological Agency, Center for Groundwater and Environmental Geology), Bandung-Indonesia (2019). [Google Scholar]
  21. H. Tsuchida, Prediction and Countermeasure against Liquefaction in Sand Deposits. Abstract of the Seminar of the Port and Harbour Research Institute. Ministry of Transport, 83 Technical able after it is being referred Journal, comments of Engineering and Technology (UET) Taxila, Pakistan 20,2-2015 Yokosuka, Japan, 3.1-3.33 (In Japanese) (1970). [Google Scholar]
  22. A. Hakam, Practical Analysis of Liquefaction Potential. Andalas Press, Padang-Indonesia (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.