Open Access
Issue |
E3S Web Conf.
Volume 610, 2025
2024 Research, Invention, and Innovation Congress (RI2C 2024)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 7 | |
Section | Agricultural Sustainability | |
DOI | https://doi.org/10.1051/e3sconf/202561003001 | |
Published online | 23 January 2025 |
- C. R. Lohri, H. M. Rajabu, D. J. Sweeney, C. Zurbrügg, Char fuel production in developing countries – A review of urban biowaste carbonization. Renewable Sustainable Energy Rev. 59, 1514–1530, (2016). https://doi.org/10.1016/j.rser.2016.01.088 [CrossRef] [Google Scholar]
- M. Ezzati, B. M. Mbinda, D. M. Kammen, Comparison of emissions and residential exposure from traditional and improved cookstoves in kenya. Environ. Sci. Technol. 34, 578–583, (2000). https://doi.org/10.1021/es9905795 [CrossRef] [Google Scholar]
- A. Ellegård, Cooking fuel smoke and respiratory symptoms among women in kow-income areas in Maputo. Health Perspect. 104, 980–985, (1996). https://doi.org/10.1289/ehp.104-146945 [Google Scholar]
- R. Bailis, D. Pennise, M. Ezzati, D. M. Kammen, E. Kituyi, Impacts of greenhouse gas and particulate emissions from woodfuel production and end-use in sub-saharan Africa (2004). https://ecommons.aku.edu/eastafrica_eai/42 [Google Scholar]
- S. Sangsuk, C. Buathong, S. Suebsiri, High-energy conversion efficiency of drum kiln with heat distribution pipe for charcoal and biochar production. Energy Sustainable Dev. 59, 1–7, (2020). https://doi.org/10.1016/j.esd.2020.08.008 [CrossRef] [Google Scholar]
- D. A. Laird, The Charcoal Vision: A win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron. J. 100, 178–181, (2008). https://doi.org/10.2134/agronj2007.0161 [CrossRef] [Google Scholar]
- J. D. Toth and Z. Dou, Use and impact of biochar and charcoal in animal production systems, (SSSA Special Publication, USA, 2016,) https://doi.org/10.2136/sssaspecpub63.2014.0043.5 [Google Scholar]
- M. J. Antal, M. Grønli, The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42, 1619–1640, (2003). https://doi.org/10.1021/ie0207919 [CrossRef] [Google Scholar]
- J. Shenxue, Training manual of bamboo charcoal for producers and Consumers. (2004). https://www.terrapreta.bioenergylists.org/files/Training%20Manual.ppd [Google Scholar]
- S. Sansuk, S. Suebsiri, P. Puakhom, The metal kiln with heat distribution pipes for high quality charcoal and wood vinegar production. Energy Sustainable Dev. 47, 149–157, (2018). https://doi.org/10.1016/j.esd.2018.10.002 [CrossRef] [Google Scholar]
- K. Manatura, Novel performance study of recirculated pyro-gas carbonizer for charcoal production. Energy Sustainable Dev. 64, 8–16, (2021). https://doi.org/10.1016/j.esd.2021.07.002 [CrossRef] [Google Scholar]
- Agricultural Economics, Rubber plantation areas of Thailand in 2021. (2021). https://www.oae.go.th/ [Google Scholar]
- C. Sowcharoensuk, Krungsri Research (2022). https://www.krungsri.com/en/research/industry/industry-outlook/agriculture/rubber/io/rubber-2022 [Google Scholar]
- S. Prasertsan, P. Krukanont, Implications of fuel moisture content and distribution on the fuel purchasing strategy of biomass cogeneration power plants. Biomass Bioenergy. 24, 13–25, (2003). https://doi.org/10.1016/S0961-9534(02)00088-0 [CrossRef] [Google Scholar]
- P. Krukanont, S. Prasertsan, Geographical distribution of biomass and potential sites of rubber wood fired power plants in southern Thailand. Biomass Bioenergy. 26, 47–59, (2004). https://doi.org/10.1016/S0961-9534(03)00060-6 [CrossRef] [Google Scholar]
- J. Hytönen, J. Nurmi, N. Kaakkurivaara, T. Kaakkurivaara, Rubber tree (Hevea brasiliensis) biomass, nutrient content, and heating values in southern Thailand. Forests. 10, 638, (2019). https://doi.org/10.3390/f10080638 [CrossRef] [Google Scholar]
- Standard Test Method for moisture in the analysis sample of coal and coke, ASTM Standards D 3172–00, (2001). [Google Scholar]
- Standard test method for volatile matter in the analysis sample of coal and coke, ASTM Standards D 3175–07. (2007). [Google Scholar]
- Standard test method for ash in the analysis sample of coal and coke from coal, ASTM Standards D 3174–04. (2004). [Google Scholar]
- Standard test method for ash in the analysis sample of coal and coke from coal, ASTM Standards D 3174–04. (2004). [Google Scholar]
- Standard practice for proximate analysis of coal and coke. ASTM Standards D 3172–89. (1990). [Google Scholar]
- Standard test method for gross higher heating value of coal and coke. ASTM Standards D 5865–10. (2010). [Google Scholar]
- FAO. Simple technologies for charcoal making. (1987). https://www.fao.org/3/X5328e/x5328e00.htm#Contents [Google Scholar]
- K. Chaturvedi, A. Singhwane, M. Dhangar, M. Mili, N. Gorhae, A. Naik, N. Prashant, A. K. Srivastava, S. Verma, Bamboo for producing charcoal and biochar for versatile applications. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-022-03715-3 [Google Scholar]
- Thai industrial standards institute ministry of industry, Thai Community Product Standards (2015). https://tcps.tisi.go.th/public/en/StandardList.aspx [Google Scholar]
- J. A. Fuwape, Effects of carbonisation temperature on charcoal from some tropical trees. Bioresour. Technol. 57, 91–94, (1996). https://doi.org/10.1016/0960-8524(96)00027-2 [CrossRef] [Google Scholar]
- L. Fagbemi, L. Khezami, R. Capart, Pyrolysis products from different biomasses: application to the thermal cracking of tar. Appl. Energy. 69, 293–306, (2001). https://doi.org/10.1016/S0306-2619(01)00013-7 [CrossRef] [Google Scholar]
- M. N. Heya, F. R. Pournavab, C. P. Artemio, C. U. Serafin, Bioenergy potential of shrub from native species of northeastern Mexico. International journal of agricultural policy and research. 2, 475–483, (2014). http://dx.doi.org/10.15739/IJAPR.020 [Google Scholar]
- R. Rahman, S. Widodo, B. Azikin, D. Tahir, Chemical composition and physical characteristics of coal and mangrove wood as alternative fuel. J. Phys.: Conf. Ser. 1341, 052008, (2019). https://doi.org/10.1088/1742-6596/1341/5/052008 [CrossRef] [Google Scholar]
- S. H. Park, N. J. Wistara, F. Febrianto, M. lee, Evaluation of sembilang bamboo (dendrocalamus giganteus) charcoal for potential utilization. BioResources. 15, 6–19, (2020). [Google Scholar]
- S. H. Park, J. H. Jang, N. J. Wistara, F. Ferianto, M. Lee, Fuel properties of indonesian bamboo carbonized at different temperatures. BioResources. 14, 4224–4235, (2019). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.