Open Access
Issue
E3S Web Conf.
Volume 610, 2025
2024 Research, Invention, and Innovation Congress (RI2C 2024)
Article Number 03002
Number of page(s) 9
Section Agricultural Sustainability
DOI https://doi.org/10.1051/e3sconf/202561003002
Published online 23 January 2025
  1. B. Mahesh, Study of compressive strength of concrete at elevated temperature with different types of cement and grades of concrete. Int. J. Eng. Technol. Manage. Sci. 7(6), 246–252 (2023). [Google Scholar]
  2. S. Abdal, W. Mansour, I. Agwa, M. Nasr, A. Abadel, Y. Özkılıç, & M. Akeed, Application of Ultra-HighPerformance Concrete in Bridge Engineering: Current Status, Limitations, Challenges, and Future Prospects, Buildings. 13, 185 (2023). [CrossRef] [Google Scholar]
  3. H.V. Damme, Concrete material science: Past, present, and future innovations. Cem. Conc. Res. 112, 5–24 (2018). [CrossRef] [Google Scholar]
  4. Y. Wanchai, V. Pichitnan, S. Prasert, J. Apisak, Corrosion behavior of reinforcement in concrete. J. Sustainable Cem.t-Based Mater. 10(9), 1–20 (2020). [Google Scholar]
  5. N.R. Phulara, J. Bhattarai, Assessment on corrosion of steel reinforced concrete structures of Kathmandu Valley using corrosion potential mapping method. J. Inst. Eng. 15(2), 45–54 (2019). [CrossRef] [Google Scholar]
  6. J. Bhattari, Fronterier of corrosion sciences (1st edition, Kshitiz Publication, Kirtipur, Nepal, pp. 304) (ISBN: 978-99946-47-30). [Google Scholar]
  7. H. Yigiter, H. Yazici, S. Aydin, Effects of cement type, water/cement ratio and cement content on sea water resistance of concrete. Build. Envir. 42, 1770–1776 (2007). [CrossRef] [Google Scholar]
  8. Shafiei Dastgerdi, R.J. Peterman, K. Riding, B.T. Beck, Effect of concrete mixture components, proportioning, and compressive strength on fracture parameters. Constr. Build. Mater. 206, 179–192 (2019) [CrossRef] [Google Scholar]
  9. K. Oleksandr, V. Zozulynets, Study of influence of alkaline component type on pH value and properties of alkali activated concretes containing basalt rock. E3S Web Conf. 280, 07001 (2021). [CrossRef] [EDP Sciences] [Google Scholar]
  10. Y. Asmara, Suparjo, S.R. Anwar, Degredation and rehabilitation of reinforcement concrete structure in industrial environment area. Eur. Chem. Bull. 12(5), 948–959 (2023). [Google Scholar]
  11. R. Patel, Prevention of corrosion of steel reinforcement in concrete. AIP Conf. Proc. 2158, 020035 (2019). [CrossRef] [Google Scholar]
  12. A.A. Al-Amiery W.N.R.W. Isahak, W.K. AlAzzawi, Corrosion inhibitors: Natural and synthetic organic inhibitors. Lubricants. 11(4), 174 (2023). [CrossRef] [Google Scholar]
  13. M.A. Blankson, S. Erdem, Comparison of the effect of organic and inorganic corrosion inhibitors on the rheology of self-compacting concrete. Constr. Buil. Mater. 77, 59–65 (2015). [CrossRef] [Google Scholar]
  14. H.-S. Lee, S. Velu, S.-J. Kwon and K. Subbiah, Corrosion inhibitors for reinforced concrete: A review, in Corrosion Inhibitors, Principles and Recent Applications (INTECH, pp. 95–120, 2018). [Google Scholar]
  15. Y. Asmara, T. Kurniawan, A. Sutjipto, J. Jafar, Application of plants extracts as green corrosion inhibitors for steel in concrete A review. Indonesian J. Sci. Technol. 3(2), 158–170 (2018). [CrossRef] [Google Scholar]
  16. J. Bhattarai, M. Somai, N. Acharya, A. Giri, A. Roka, N. Phulara, Study on the effects of greenbased plant extracts and water-proofers as anticorrosion agents for steel-reinforced concrete slabs. E3S Web Conf., 302, 1–10 (2021). [Google Scholar]
  17. M. Somai, A. Giri, A. Roka, J. Bhattarai, Comparative studies on the anti‐corrosive action of waterproofing agent and plant extract to steel rebar. Macromol. Symp. 410(1), 2100276 (2023). [CrossRef] [Google Scholar]
  18. A. Giri, M. Gautam, A. Roka, N.P. Bhattarai, J. Bhattarai. Performance of anticorrosive measures of steel in concrete infrastructure by plant‐based extracts. Macromol. Symp. 410(1), 2200115 (2023). [CrossRef] [Google Scholar]
  19. ASTM C876-15, Standard test method for corrosion potentials of uncoated reinforcing steels in concrete (ASTM International, West Conshohocken, USA, 2022). [Google Scholar]
  20. M. Rana, S. Joshi, J. Bhattarai, Extract of different plants of Nepalese origin as green corrosion inhibitor for mild steel in 0.5 M NaCl solution. Asian J. Chem. 29(5), 1130–1134 (2017). [CrossRef] [Google Scholar]
  21. B.N. Subedi, K. Amgain, S. Joshi, J. Bhattarai, Green approach to corrosion inhibition effect of Vitex negundo leaf extract on aluminum and copper metals in biodiesel and its blend. Intl. J. Corros. Scale Inhib. 8(3), 744–759 (2019). [Google Scholar]
  22. ASTM C1582/C1582M-11, Standard specification for admixtures to inhibit chloride induced corrosion of reinforcing steel in concrete (ASTM International, West Conshohocken, USA, pp. 10, 2017). [Google Scholar]
  23. A. Sadiq, M.Q. Hayat, S. Murad, Qualitative and Quantitative Determination of Secondary metabolites and Antioxidant Potential of Eruca sativa. Nat. Prod. Chem. Res., 2(4), 1000137. (2014). [CrossRef] [Google Scholar]
  24. R. Chaphalkar, A. Apte, Y.O.S. Talekar and M. Nandeve, Antioxidants of Phyllanthus emblica L. bark extract provide hepatoprotection against ethanol-induced hepatic damage. Oxid. Med. Cell. Longevity. 2017, 3876040 (2017). [CrossRef] [PubMed] [Google Scholar]
  25. T. Zhao, Q. Sun, M. Marques, M. Witcher, Anticancer properties of Phyllanthus emblica (Indian Gooseberry). Oxid. Med. Cell. Longevity. 2015, 950890 (2015). [Google Scholar]
  26. G. Venkatesh, C. Kamal, P. Vennila, S. Kaya, M.G.L. Annaamalai, B.E. Ibrahimi, Sustainable corrosion inhibitor for steel embedded in concrete by Guar Gum: Electrochemical and theoretical analyses. Appl. Surf. Sci. Adv. 12, 100328 (2022). [CrossRef] [Google Scholar]
  27. S. Sudhashini, P. Amudha, R. Vidya, V. Rani, R. Satheesh Kumar, Phytochemical screening and profiling of secondary metabolites of Annona muricata bark. J, Adv. Zool. 44(4), 329–339 (2023). [Google Scholar]
  28. D. Njokua, C. M.A., K. Oguzie, C. Ogukwea, A. Oguzie, Corrosion inhibition of mild steel in hydrochloric acid solution by the leaf extract of Nicotiana tabacum. Adv. Mater. Corros. 1, 54–61 (2013). [Google Scholar]
  29. Sulistiawan, W. Setyaningsih, A. Rohman, A new FTIR method combined with multivariate data analysis for determining aflatoxins in peanuts (Arachis hypogaea). J. Appl. Pharm. Sci. 12(7), 199206 (2022). [Google Scholar]
  30. P.P. Yue, Y.J. Hu, G.Q. Fu. C.X. Sun. M.F. Li, F. Peng, R.C. Sun, Structural differences between the lignin-carbohydrate complexes (LCCs) from 2and 24-month old bamboo (Neosinocalamus affinis). Int. J. Mol. Sci. 19(1), 1 (2018). [Google Scholar]
  31. J.M. Barcelo, A.M. Gatchallan, I.J.B. Aquino, D.R.E. Ollero, F.L.D. Cortez, T.M. Costales, L.A.Q. Marzo, FTIR spectrum and antimutagenicity of coffea arabica pulp and Arachis hypogaea test in relation to their In vitro antioxidant properties. Asia Pac. J. Multidiscip. Res. 3(4), 99–108 (2015). [Google Scholar]
  32. M. Maczka, A. Ciupa, A. Gągor, A. Sieradzki, A. Pikul, B. Macalik, M. Drozd, Perovskite metal formate framework of [NH2-CH+NH2]Mn(HCOO)3]: phase transition, magnetic, dielectric, and phonon properties. Inorg. Chem. 53(10), 5260–5268 (2014). [CrossRef] [PubMed] [Google Scholar]
  33. K.K. Veedu, T.P. Kalarikkal, N. Jayakumar, N.K. Gopalan, Anticorrosive performance of Mangifera indica L. leaf extract-based hybrid coating on steel. ACS Omega. 4(6), 10176–10184 (2019). [CrossRef] [PubMed] [Google Scholar]
  34. A.B.D. Nandiyanto, R. Ragadhita, M. Fiandini, Interpretation of Fourier transform infrared spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition. Indonesian J. Sci. Technol. 8(1), 113–126 (2023). [Google Scholar]
  35. V. Argyropoulos, S. Boyatzis, M. Giannoulaki, E. Guilminot, A. Zacharopoulou, Organic green corrosion inhibitors derived from natural and/or biological sources for conservation of metals cultural heritage, in: Microorganisms in the deterioration and preservation of cultural heritage (Springer, Cham, pp. 341–367, 2021). https://doi.org/10.1007/978-3-030-69411-1_15 [CrossRef] [Google Scholar]
  36. D.V.P. Tran, P. Sancharoen, P. Klomjit, S. Tangtermsirikul, Electrical resistivity and corrosion potential of reinforced concrete: Influencing factors and prediction models. J. Adhes. Sci. Technol., 34(19), 2107–2119 (2020). https://doi.org/10.1080/01694243.2020.1750784 [CrossRef] [Google Scholar]
  37. Zakeri, E. Bahmani, A. Aghdam, Plant extracts as sustainable and green corrosion inhibitors for protectionof ferrous metals in corrosive media: A mini review. Corros. Commun. 5, 25–38 (2022). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.