Open Access
Issue
E3S Web Conf.
Volume 619, 2025
3rd International Conference on Sustainable Green Energy Technologies (ICSGET 2025)
Article Number 04001
Number of page(s) 10
Section Materials for a Sustainable Future
DOI https://doi.org/10.1051/e3sconf/202561904001
Published online 12 March 2025
  1. Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi A. Nanoparticles and vaccine development. Pharmaceutical nanotechnology. 2020 Feb 1;8(1):6-21. [CrossRef] [PubMed] [Google Scholar]
  2. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg AP. Nanoparticle vaccines. Vaccine. 2014 Jan 9;32(3):327-37. [CrossRef] [PubMed] [Google Scholar]
  3. Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, Ali F, Bhattacharjee B, Vora L. Nanoparticle-based delivery systems for vaccines. Vaccines. 2022 Nov 17;10(11):1946. [CrossRef] [PubMed] [Google Scholar]
  4. Zaman M, Good MF, Toth I. Nanovaccines and their mode of action. Methods. 2013 May 1;60(3):226-31. [CrossRef] [PubMed] [Google Scholar]
  5. Sahdev P, Ochyl LJ, Moon JJ. Biomaterials for nanoparticle vaccine delivery systems. Pharmaceutical research. 2014 Oct;31:2563-82. [CrossRef] [PubMed] [Google Scholar]
  6. Garg A, Dewangan HK. Nanoparticles as adjuvants in vaccine delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2020;37(2). [Google Scholar]
  7. Kelly HG, Kent SJ, Wheatley AK. Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Review of Vaccines. 2019 Mar 4;18(3):269-80. [CrossRef] [PubMed] [Google Scholar]
  8. Shen Y, Hao T, Ou S, Hu C, Chen L. Applications and perspectives of nanomaterials in novel vaccine development. MedChemComm. 2018;9(2):226-38. [CrossRef] [PubMed] [Google Scholar]
  9. Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Frontiers in immunology. 2018 Oct 4;9:2224. [CrossRef] [PubMed] [Google Scholar]
  10. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic nanoparticles for vaccines and immunotherapy. Chemical reviews. 2015 Oct 14;115(19):11109-46. [CrossRef] [PubMed] [Google Scholar]
  11. Salem AK. Nanoparticles in vaccine delivery. The AAPS journal. 2015 Mar;17(2):289-91. [CrossRef] [PubMed] [Google Scholar]
  12. Lung P, Yang J, Li Q. Nanoparticle formulated vaccines: opportunities and challenges. Nanoscale. 2020;12(10):5746-63. [CrossRef] [PubMed] [Google Scholar]
  13. Demento SL, Cui W, Criscione JM, Stern E, Tulipan J, Kaech SM, Fahmy TM. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials. 2012 Jun 1;33(19):4957-64. [CrossRef] [PubMed] [Google Scholar]
  14. Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Frontiers in cellular and infection microbiology. 2013 Mar 25;3:13. [CrossRef] [PubMed] [Google Scholar]
  15. Curley SM, Putnam D. Biological nanoparticles in vaccine development. Frontiers in Bioengineering and Biotechnology. 2022 Mar 23;10:867119. [CrossRef] [PubMed] [Google Scholar]
  16. Diaz-Arévalo D, Zeng M. Nanoparticle-based vaccines: opportunities and limitations. InNanopharmaceuticals 2020 Jan 1 (pp. 135-150). [Google Scholar]
  17. Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Frontiers in immunology. 2018 Oct 4;9:2224. [CrossRef] [PubMed] [Google Scholar]
  18. Koirala P, Chen SP, Boer JC, Khalil ZG, Deceneux C, Goodchild G, Lu L, Faruck MO, Shalash AO, Bashiri S, Capon RJ. Polymeric Nanoparticles as a Self‐ Adjuvanting Peptide Vaccine Delivery System: The Role of Shape. Advanced Functional Materials. 2023 Mar;33(12):2209304. [CrossRef] [Google Scholar]
  19. Guo S, Fu D, Utupova A, Sun D, Zhou M, Jin Z, Zhao K. Applications of polymer- based nanoparticles in vaccine field. Nanotechnology Reviews. 2019 Nov 6;8(1):143-55. [CrossRef] [Google Scholar]
  20. Yang L, Li W, Kirberger M, Liao W, Ren J. Design of nanomaterial based systems for novel vaccine development. Biomaterials science. 2016;4(5):785-802. [CrossRef] [PubMed] [Google Scholar]
  21. Hassett KJ, Higgins J, Woods A, Levy B, Xia Y, Hsiao CJ, Acosta E, Almarsson Ö, Moore MJ, Brito LA. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. Journal of Controlled Release. 2021 Jul 10;335:237-46. [CrossRef] [Google Scholar]
  22. Pandey RK, Prajapati VK. Molecular and immunological toxic effects of nanoparticles. International journal of biological macromolecules. 2018 Feb 1;107:1278-93. [CrossRef] [Google Scholar]
  23. Najafi-Hajivar S, Zakeri-Milani P, Mohammadi H, Niazi M, Soleymani-Goloujeh M, Baradaran B, Valizadeh H. Overview on experimental models of interactions between nanoparticles and the immune system. Biomedicine & Pharmacotherapy. 2016 Oct 1;83:1365-78. [CrossRef] [Google Scholar]
  24. Zolnik BS, González-Fernández Á, Sadrieh N, Dobrovolskaia MA. Minireview: nanoparticles and the immune system. Endocrinology. 2010 Feb 1;151(2):458-65. [CrossRef] [PubMed] [Google Scholar]
  25. Dobrovolskaia MA, Shurin M, Shvedova AA. Current understanding of interactions between nanoparticles and the immune system. Toxicology and applied pharmacology. 2016 May 15;299:78-89. [CrossRef] [Google Scholar]
  26. Daniel SK, Tharmaraj V, Sironmani TA, Pitchumani K. Toxicity and immunological activity of silver nanoparticles. Applied Clay Science. 2010 May 1;48(4):547-51. [CrossRef] [Google Scholar]
  27. Kononenko V, Narat M, Drobne D. Nanoparticle interaction with the immune system. Archives of Industrial Hygiene and Toxicology. 2015 May 19;66(2). [Google Scholar]
  28. Ernst LM, Casals E, Italiani P, Boraschi D, Puntes V. The interactions between nanoparticles and the innate immune system from a nanotechnologist perspective. Nanomaterials. 2021 Nov 6;11(11):2991. [CrossRef] [Google Scholar]
  29. Kisby T, Yilmazer A, Kostarelos K. Reasons for success and lessons learnt from nanoscale vaccines against COVID-19. Nature Nanotechnology. 2021 Aug;16(8):843-50. [CrossRef] [PubMed] [Google Scholar]
  30. Magrì, Davide; Calzolai, Luigi; Gioria, Sabrina (2021): Nanoparticle-based vaccines in clinical trial/use for COVID-19 and licensed for other pathogens. European Commission, Joint Research Centre (JRC). [Google Scholar]
  31. Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, Giattino C, Rodés-Guirao L. A global database of COVID-19 vaccinations. Nature human behaviour. 2021 Jul;5(7):947-53. [CrossRef] [PubMed] [Google Scholar]
  32. Dyer O. Covid-19: countries are learning what others paid for vaccines. BMJ: British Medical Journal (Online). 2021 Jan 29;372. [Google Scholar]
  33. Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Advanced drug delivery reviews. 2021 Mar 1;170:71-82. [CrossRef] [Google Scholar]
  34. Blumenthal KG, Phadke NA, Bates DW. Safety surveillance of COVID-19 mRNA vaccines through the vaccine safety datalink. Jama. 2021 Oct 12;326(14):1375-7. [CrossRef] [PubMed] [Google Scholar]
  35. McSweeney MD, Mohan M, Commins SP, Lai SK. Anaphylaxis to Pfizer/BioNTech mRNA COVID-19 vaccine in a patient with clinically confirmed PEG allergy. Frontiers in Allergy. 2021 Sep 29;2:57. [CrossRef] [Google Scholar]
  36. Castells MC, Phillips EJ. Maintaining Safety with SARS-CoV-2 Vaccines. Reply. The New England journal of medicine. 2021 Mar 11;384(10): e37. [Google Scholar]
  37. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. International journal of nanomedicine. 2008 Dec 1;3(2):133-49. [CrossRef] [Google Scholar]
  38. Abd Ellah NH, Gad SF, Muhammad K. E Batiha G, Hetta HF. Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19. Nanomedicine. 2020 Sep;15(21):2085-102. [CrossRef] [PubMed] [Google Scholar]
  39. Rajasekaran, S., Murugaperumal Krishnamoorthy, Suresh Srinivasan, and Pramod Kumar Gouda. “Integrated renewable electrification system modeling and tri- objective optimization analysis for net zero energy institutional building: a simulated case study of green hydrogen production.” Environment, Development and Sustainability (2024): 1-30. [Google Scholar]
  40. Hoet PH, Brüske-Hohlfeld I, Salata OV. Nanoparticles–known and unknown health risks. Journal of nanobiotechnology. 2004 Dec;2:1-5. [CrossRef] [Google Scholar]
  41. Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: challenges and future needs. Journal of Environmental Science and Health Part C. 2009 Feb 17;27(1):1-35. [CrossRef] [PubMed] [Google Scholar]
  42. Byrne JD, Baugh JA. The significance of nanoparticles in particle-induced pulmonary fibrosis. McGill Journal of Medicine: MJM. 2008 Jan;11(1):43. [Google Scholar]
  43. Gupta R, Xie H. Nanoparticles in daily life: applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology. 2018;37(3). [Google Scholar]
  44. Thakur M, Gupta H, Singh D, Mohanty IR, Maheswari U, Vanage G, Joshi DS. Histopathological and ultra-structural effects of nanoparticles on rat testis following 90 days (Chronic study) of repeated oral administration. Journal of nanobiotechnology. 2014 Oct;12(1):1-3. [CrossRef] [Google Scholar]
  45. Noon JB, Sharma A, Platten J, Quinton LJ, Reinhardt C, Bosmann M. IL-27 enhances the lymphocyte mediated innate resistance to primary hookworm infection in the lungs. bioRxiv. 2020 Aug 12:2020-08. [Google Scholar]
  46. Moghimi SM. Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines. Molecular Therapy. 2021 Mar 3;29(3):898-900. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.