Open Access
Issue
E3S Web Conf.
Volume 632, 2025
The 5th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE5)
Article Number 01005
Number of page(s) 12
Section Natural Resources, Earth & Environmental Studies
DOI https://doi.org/10.1051/e3sconf/202563201005
Published online 03 June 2025
  1. N. Nehme, “Evaluation de la qualité de l’eau du bassin inférieur de la rivière de Litani, Liban : approche environnementale.,” Lorraine (France), 2014. [Google Scholar]
  2. State of the World’s Drinking Water: An Urgent Call to Action to Accelerate Progress on Ensuring Safe Drinking Water for All, 1st ed. Geneva: World Health Organization, 2022. [Google Scholar]
  3. “Global health estimates 2019: Deaths by cause, age, sex, by country and by region, 2000-2019 [online database]. Geneva: World Health Organization; 2020. [Google Scholar]
  4. B. Sieren, J. Baker, X. Wang, S.J. Rozzoni, K. Carlson, A. McBain, D. Kerstan, L. Allen, L. Liao, Z. Li, Sorptive Removal of Color Dye Safranin O by Fibrous Clay Minerals and Zeolites. Adv. Mater. Sci. Eng. 2020(1), 1-12 (2020). https://doi.org/10.1155/2020/8845366 [CrossRef] [Google Scholar]
  5. K. Hayat, M. A. Gondal, M. M. Khaled, Z. H. Yamani, S. Ahmed, Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3. J. Hazard. Mater. 186(2–3), 1226–1233 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.133 [CrossRef] [Google Scholar]
  6. M. R. Malekbala, S. M. Soltani, S. K. Yazdi, S. Hosseini, “Equilibrium and Kinetic Studies of Safranine Adsorptionon Alkali-Treated Mango Seed Integuments,” IJCEA, 3(3), 160–166 (2012). https://doi.org/10.7763/IJCEA.2012.V3.179 [CrossRef] [Google Scholar]
  7. S. Saravanan Jayanthi, P. Ramamurthy, Excited singlet state reaction of phenosafranine with electron donors Role of the heavy-atom effect in triplet induction, Faraday Trans. 94(12), 1675–1679 (1998). https://doi.org/10.1039/a800455b [CrossRef] [Google Scholar]
  8. M. V. Encinas, A. M. Rufs, M. G. Neumann, C. M. Previtali, Photoinitiated vinyl polymerization by safranine T/triethanolamine in aqueous solution. Polymer, 37(8), 1395–1398, (1996). https://doi.org/10.1016/0032-3861(96)81137-2 [CrossRef] [Google Scholar]
  9. V. K. Gupta, R. Jain, A. Mittal, M. Mathur, and S. Sikarwar, Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J. Coll. Interface Sci., 309(2),464–469 (2007). https://doi.org/10.1016/j.jcis.2006.12.010 [CrossRef] [Google Scholar]
  10. M. Krishnamoorthy, M. A. Mohamed, N. H. M. Kaus, S. F. M. Yusoff, Adsorption and photocatalytic degradation of cationic dyes over bismuth ferrite (BFO) intercalated on liquid natural rubber-based hydrogel compound. Journal of Industrial and Engineering Chemistry, 116, 447–464 (2022). https://doi.org/10.1016/j.jiec.2022.09.035. [CrossRef] [Google Scholar]
  11. M. El-Kemary, H. El-Shamy, Fluorescence modulation and photodegradation characteristics of safranin O dye in the presence of ZnS nanoparticles. J. Photochem. Photobiol. A: Chem., 205(2–3), 151–155 (2009). https://doi.org/10.1016/j.jphotochem.2009.04.021 [CrossRef] [Google Scholar]
  12. R. Boudraa, D. Talantikite-Touati, A Souici, A Djermoune, A. Saidani, K. Fendi, A. Amrane, J. C. Bollinger, H. N. Tran, A. Hadadi, L. Mouni. Optical and photocatalytic properties of TiO2– Bi2O3–CuO supported on natural zeolite for removing Safranin-O dye from water and wastewater, Journal of Photochemistry and Photobiology A: Chemistry, 443, 114845 (2023). https://doi.org/10.1016/j.jphotochem.2023.114845 [CrossRef] [Google Scholar]
  13. Z. W. Heng, Y. Y. Tan, W. C. Chong, E. Mahmoudi, A. W. Mohammad, H. C. Teoh, L. C. Sim, C. H. Koo, Preparation of a novel polysulfone membrane by incorporated with carbon dots grafted silica from rice husk for dye removal, Journal of Water Process Engineering, 40, 101805 (2021). https://doi.org/10.1016/j.jwpe.2020.101805 [CrossRef] [Google Scholar]
  14. B. L. Alderete, J. da Silva, R. Godoi, F. R. da Silva, S. R. Taffarel, L. P. da Silva, A. L. H. Garcia, H. M. Júnior, H. L. N. de Amorim, J. N. Picada, Evaluation of toxicity and mutagenicity of a synthetic effluent containing azo dye after Advanced Oxidation Process treatment. Chemosphere, 263, 128291 (2021). https://doi.org/10.1016/j.chemosphere.2020.128291 [CrossRef] [Google Scholar]
  15. J. Bensalah, A Habsaoui, O. Dagdag, A. Lebkiri, Adsorption of a cationic dye (Safranin) by artificial cationic resins Amberlite®IRC-50: Equilibrium, kinetic and thermodynamic study. Chemical Data Collections, 35, 100756 (2021). https://doi.org/10.1016/j.cdc.2021.100756 [CrossRef] [Google Scholar]
  16. M. A. Salem, I. A. Salem, H. M. Zaki, and A. M. El-Sawy, Elimination of Safranin-O and a binary mixture of Safranin-O and methylene blue from water by adsorption on magnetite/Ag nanocomposite. Egyp. J. Petrol., 31(2), 39–49 (2022). https://doi.org/10.1016/j.ejpe.2022.05.002 [CrossRef] [Google Scholar]
  17. P. M. Pakdel, S. J. Peighambardoust, N. Arsalani, H. Aghdasinia, Safranin-O cationic dye removal from wastewater using carboxymethyl cellulose-grafted-poly(acrylic acid-co-itaconic acid) nanocomposite hydrogel. Environ.Res., 212, 113201 (2022). https://doi.org/10.1016/j.envres.2022.113201 [CrossRef] [Google Scholar]
  18. H. T. Nguyen, F. A. Ngwabebhoh, N. Saha, T. Saha, and P. Saha, Gellan gum/bacterial cellulose hydrogel crosslinked with citric acid as an eco-friendly green adsorbent for safranin and crystal violet dye removal. Int. J. Biol. Macromolecul., 222, 7–89 (2022). https://doi.org/10.1016/j.ijbiomac.2022.09.040 [Google Scholar]
  19. P. Mohammadzadeh Pakdel, S. J. Peighambardoust, N. Arsalani, and H. Aghdasinia, Safranin-O cationic dye removal from wastewater using carboxymethyl cellulose-grafted-poly(acrylic acid- co-itaconic acid) nanocomposite hydrogel. Environmental Research, 212, 113201 (2022). https://doi.org/10.1016/j.envres.2022.113201 [CrossRef] [Google Scholar]
  20. N. Sorek, T. H. Yeats, H. Szemenyei, H. Youngs, and C. R. Somerville, The Implications of Lignocellulosic Biomass Chemical Composition for the Production of Advanced Biofuels, BioScience, 64(3), 192–201 (2014). https://doi.org/10.1093/biosci/bit037 [CrossRef] [Google Scholar]
  21. A. Capretta, R. B. Maharajh, and R. A. Bell, Synthesis and characterization of cyclomaltoheptaose-based metal chelants as probes for intestinal permeability. Carbohydrate Research, 267(1), 49–63 (1995). https://doi.org/10.1016/0008-6215(94)00289-R [CrossRef] [Google Scholar]
  22. O. K. Júnior, L. V. A. Gurgel, R. P. De Freitas, and L. F. Gil, Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydrate Polymers, 77(3) 643–650 (2009). https://doi.org/10.1016/j.carbpol.2009.02.016 [CrossRef] [Google Scholar]
  23. A. M. Senna, K. M. Novack, and V. R. Botaro, Synthesis and characterization of hydrogels from cellulose acetate by esterification crosslinking with EDTA dianhydride. Carbohydrate Polymers, 114, 260–268 (2014). https://doi.org/10.1016/j.carbpol.2014.08.017 [CrossRef] [Google Scholar]
  24. M. Xu, Y. Zhang, Z. Zhang, Y. Shen, M. Zhao, and G. Pan, Study on the adsorption of Ca2+, Cd2+ and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride. Chemical Engineering Journal, 168(2), 737–745 (2011). https://doi.org/10.1016/j.cej.2011.01.069 [CrossRef] [Google Scholar]
  25. L. Jabi, M. Nor, I. Jilal, A. El Idrissi, H. Amhamdi, M. Abou-Salama, Y. El Ouardi, S. El Barkany, K. Laatikainen New Cellulose based pH-Sensitive Hydrogel for Highly Efficient Dyes Removal in Water Treatment: Kinetic, Thermodynamic, Theoretical and Computational Studies. (2021). https://doi.org/10.21203/rs.3.rs-1138998/v1 [Google Scholar]
  26. M. H. El-Newehy, M. E. El-Naggar, S. Alotaiby, H. El-Hamshary, M. Moydeen, S. Al-Deyab, Green Electrospining of Hydroxypropyl Cellulose Nanofibres for Drug Delivery Applications. j nanosci nanotechnol, 18(2), 805–814 (2018). https://doi.org/10.1166/jnn.2018.13852 [CrossRef] [PubMed] [Google Scholar]
  27. I. Jila, S El-Barkany, Z Bahari, O Sundman, A El-Idrissi, M Abou-Salama, M Loutou, E Ablouh, H. Amhamdi, New benzyloxyethyl cellulose (BEC) crosslinked EDTA: synthesis, characterization and application for supramolecular self-assembling nanoencapsulation of Pb (II). Mater. Today: Proc., 13, 909–919 (2019). https://doi.org/10.1016/j.matpr.2019.04.055 [CrossRef] [Google Scholar]
  28. M.-S. Chiou, P.-Y. Ho, and H.-Y. Li, Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes and Pigments, 60(1), 69–84 (2004). https://doi.org/10.1016/S0143-7208(03)00140-2 [CrossRef] [Google Scholar]
  29. Y. Zhou, M. Zhang, X. Hu, X. Wang, J. Niu, and T. Ma, “Adsorption of Cationic Dyes on a Cellulose-Based Multicarboxyl Adsorbent,” J. Chem. Eng. Data, 58(2), 413–421 (2013). https://doi.org/10.1021/je301140c [CrossRef] [Google Scholar]
  30. Y. Zhou, M Zhang, X. Wang, Q. Huang, Y. Min, T. Ma, J. Niu, Removal of Crystal Violet by a Novel Cellulose-Based Adsorbent: Comparison with Native Cellulose, Ind. Eng. Chem. Res., 53(13), 5498–5506 (2014). https://doi.org/10.1021/ie404135y [CrossRef] [Google Scholar]
  31. L. Liu, Z. Y. Gao, X. P. Su, X. Chen, L. Jiang, and J. M. Yao, Adsorption Removal of Dyes from Single and Binary Solutions Using a Cellulose-based Bioadsorbent. ACS Sustainable Chem. Eng., 3(3), 432–442 (2015). https://doi.org/10.1021/sc500848m [CrossRef] [Google Scholar]
  32. L. Li, C. Luo, X. Li, H. Duan, and X. Wang, Preparation of magnetic ionic liquid/chitosan/graphene oxide composite and application for water treatment. International Journal of Biological Macromolecules, 66, 172–178 (2014). https://doi.org/10.1016/j.ijbiomac.2014.02.031 [CrossRef] [Google Scholar]
  33. R. Aziam, D. S. Stefan, A. Aboussabek, M. Chiban, and A.-M. Croitoru, Alginate–Moroccan Clay, New Bio-Nanocomposite for Removal of H2PO4−, HPO42−, and NO3− Ions from Aqueous Solutions. Polymers, 15(24), 4666 (2023). https://doi.org/10.3390/polym15244666 [CrossRef] [PubMed] [Google Scholar]
  34. Y. Bulut, Z. Tez, “Removal of heavy metals from aqueous solution by sawdust adsorption,” Journal of Environmental Sciences, 19(2), 160–166 (2007). https://doi.org/10.1016/S1001-0742(07)60026-6 [CrossRef] [Google Scholar]
  35. R. Apiratikul, P. Pavasant, Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Biores. Technol., 99(8), 2766–2777 (2008). https://doi.org/10.1016/j.biortech.2007.06.036 [CrossRef] [Google Scholar]
  36. M. Afzal, F. Mahmood, and M. Saleem, Thermodynamics of adsorption of acetone on active carbon supported metal adsorbents, Coll. Polym. Sci., 270(9), 917–926 (1992). https://doi.org/10.1007/BF00657737 [CrossRef] [Google Scholar]
  37. R. Qadeer, J. Hanif, M. Saleem, and M. Afzal, “Surface characterization and thermodynamics of adsorption of Sr2+, Ce3+, Sm3+, Gd3+, Th4+, UO 2 2+ on activated charcoal from aqueous solution,” Colloid. Polym. Sci., 271(1), 83–90 (1993). https://doi.org/10.1007/BF00652307 [CrossRef] [Google Scholar]
  38. O. Fraiha, N. Zaki, N. Hadoudi, A. Salhi, A. ElYoussfi, H. Amhamdi, M. Ahari, Adsorption-based removal of amoxicillin from aqueous environments: A mini review. E3S Web of Conf. 527, (2024). https://doi.org/10.1051/e3sconf/202452703012 [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.