Open Access
Issue |
E3S Web Conf.
Volume 641, 2025
The 17th International Scientific Conference of Civil and Environmental Engineering for the PhD. Students and Young Scientists – Young Scientist 2025 (YS25)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 12 | |
Section | Civil Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202564101021 | |
Published online | 12 August 2025 |
- C. K. Chau, T. M. Leung, W. Y. Ng, A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings, Applied Energy, 143, 1 (2015) [Google Scholar]
- L. Cabeza, L. Rincón, V. Vilariño, G. Pérez, A. Castell, Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review, Renewable and Sustainable Energy Reviews, 29, (2014) [Google Scholar]
- F. Asdrubali, G. Grazieschi, Life cycle assessment of energy efficient buildings, Energy Reports, 6, 1, (2020) [Google Scholar]
- A. Brahim, Ecodesign criteria for composite materials and products, Journal of Fundamental and Applied Science, 5, 1, (2013) [Google Scholar]
- Regulation (EU) 2024/1781 of the European Parliament and of the Council of 13 June 2024 establishing a framework for the setting of ecodesign requirements for sustainable products, Official Journal of the European Union, (2024) [Google Scholar]
- Directive (EU) 2024/1275 of the European Parliament and of the Council of 24 April 2024 on the energy performance of buildings, Official Journal of the European Union, (2024) [Google Scholar]
- M. Borkowski, Ocena cyklu istnienia obiektów na przykładzie budownictwa jednorodzinnego, Przegląd budowlany, 3, (2015) [Google Scholar]
- A. F. Abd Rashid, S. Yusoff, N. Mahat, A review of the application of LCA for sustainable buildings in Asia, Advanced Materials Research, 1597-1601, (2013) [Google Scholar]
- L. Gustavsson, A. Joelsson, Life cycle primary energy analysis of residential buildings, Energy and Buildings, 42, 2, (2010) [Google Scholar]
- N. Kohler, Energie-und Stofflflussbilanzen von Gebäuden : Stand der Forschung und Perspektiven, Institut für Industrielle Bauproduktion, Universität Karlsruhe, (1996) [Google Scholar]
- M. Golański, Wybór materiałów budowlanych w kontekście efektywności energetycznej i wpływu środowiskowego, Civil and Environmental Engineering, 3, (2012) [Google Scholar]
- K. L. Ipsen, M. Pizzol, M. Birkved, B. Amor, How Lack of Knowledge and Tools Hinders the Eco-Design of Buildings - A Systematic Review, Urban Science, 5, 1, (2021) [Google Scholar]
- B. Polster, B. Peuportier, I. B. Sommereux, P. Diaz Pedregal, C. Gobin, E. Durand, Evaluation of the environmental quality of buildings towards a more environmentally conscious design, Solar Energy, 51, 3, (1996) [Google Scholar]
- Ministerstwo Rozwoju i Technologii RP, Poprawa charakterystyki energetycznej budynków – Poradnik, (2024) [Google Scholar]
- B. Peuportier, F. Leurent, J. Roger-Estrade, Eco-Design of Buildings and Infrastructure, Presse de Mines, Paris, France, (2013) [Google Scholar]
- S. Skwierz, M. Lewarski, V. Krupin, A. Gorzałczyński, R. Jeszke, M. Pyrka, M. Rosłaniec, W. Rabiega, J. Boratyński, I. Tatarewicz, J. Witalewski-Baltvilks, A. Wąs, P. Kobus, I. Tobiasz, A. Tylka, M. Cygler, M. Sekuła, Polska NET-Zero 2050 - Poradnik transformacji energetycznej dla samorządów, Centrum Analiz Klimatyczno-Energetycznych, (2021) [Google Scholar]
- S. Rosolski, Forma a efektywność energetyczna dla uzyskania budynku niemal zero-energetycznego, Builder Science, 315, 10, (2023) [Google Scholar]
- F. Asdrubali, I. Ballarini, V. Corrado, L. Evangelisti, G. Grazieschi, C. Guattari, Energy and environmental payback times for an NZEB retrofit, Building and Environment, 147, 1, (2019) [Google Scholar]
- P. Narowski, Zmiany w sposobie obliczania zapotrzebowania na energię budynków - norma PN-EN ISO 52016-1, Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska, (2017) [Google Scholar]
- C. Matasci, Life Cycle Assessment of 21 Buildings: Analysis of the Different Life Phases and Highlighting of the Main Causes of Their Impact on the Environment, Swiss Federal Institute of Technology Zurich, Faculté des sciences, Université de Genève, (2014) [Google Scholar]
- M.M. Khasreen, P.F.G. Banfill, G.F. Menzies, Life-cycle assessment and the environmental impact of buildings: A review, Sustainability, 3, 1, (2009) [Google Scholar]
- European Commission - Joint Research Centre - Institute for Environment and Sustainability, International Reference Life Cycle Data System (ILCD) Handbook general guide for life cycle assessment : detailed guidance, Publications Office, (2010) [Google Scholar]
- H. König, Projekt: Lebenszyklusanalyse von Wohngebäuden - Lebenszyklusanalyse mit Berechnung der Ökobilanz und Lebenszykluskosten, Ascona GbR, (2017) [Google Scholar]
- I. Zabalza Bribián, A. Valero Capilla, A. Aranda Usón, Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential, Building and Environment, 46, 5, (2011) [Google Scholar]
- M. Goedkoop, R. Spriensma, The Eco-indicator 99 A damage oriented method for Life Cycle Impact Assessment Methodology Report, Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, (2001) [Google Scholar]
- B. Peuportier, C. Roux, Eco-design of urban settlements using LCA, Centre for Energy Efficiency of Systems, MINES ParisTech, (2016) [Google Scholar]
- S. Sipahi, N. Kulözü-Uzunboy, A study on reducing the carbon footprint of architectural buildings based on their materials under the guidance of eco-design strategies, Clean Technologies and Environmental Policy, 23, 3, (2021) [Google Scholar]
- T. Recht, P. Schalbart, B. Peuportier, Ecodesign of a ’plus-energy’ house using stochastic occupancy model, life-cycle assessment and multi-objective optimisation, red. N. Hamza, C. Underwood, Building simulation and optimisation, third international building performance simulation association IBPSA-England, Newcastle, United Kingdom, (2016) [Google Scholar]
- G.A. Blengini, T. Di Carlo, The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings, Energy and Buildings, 42, 6, (2010) [Google Scholar]
- A. Lalive D'epinay, R. Pulli, Überblick über die Ökobilanzierung von Gebäuden, Bundesamt für Energie, ETH Zürich, (1998) [Google Scholar]
- K. Adalberth, Energy use during the Life Cycle of Single-Unit Dwellings: Examples, Building and Environment, 32, 4, (1997) [Google Scholar]
- M. Gratzl-Michlmair, Ökobilanzierung von Wohnhausanlagen Vergleich der lebenszyklusweiten Umweltwirkungen von Wohnhausanlagen verschiedener Bauweise, Institut für Materialprüfung und Baustofftechnologie, Technische Universtiät Graz, (2008) [Google Scholar]
- B. Felski, Efektywność energetyczna a cykl życia budynków w kontekście działań mitygacyjnych wobec zmian klimatycznych - studium przypadku na przykładzie budynku przedszkola we wsi Sierakowice, Wydział Architektury, Sopocka Szkoła Wyższa, (2018) [Google Scholar]
- T. Bruce-Hyrkäs, P. Pasanen, R. Castro, Overview of Whole Building Life-Cycle Assessment for Green Building Certification and Ecodesign through Industry Surveys and Interviews, 25th CIRP Life Cycle Engineering (LCE) Conference, 30 April – 2 May 2018, Copenhagen, Denmark, (2018) [Google Scholar]
- A.M. Moncaster, F. Pomponi, K.E. Symons, P.M. Guthrie, Why method matters: Temporal, spatial and physical variations in LCA and their impact on choice of structural system, Energy and Buildings, 173, 8, (2018) [Google Scholar]
- K. Araszkiewicz, A. Tryfon-Bojarska, A. Szerner, Modern information management throughout a construction project life cycle – selected issues concerning digitization in construction and a case study, Technical Transactions, Civil Engineering, 8, (2017) [Google Scholar]
- I. Blanc, B. Peuportier, Eco-design of buildings and comparison of materials, 1st International Seminar on Society and Materials, March 2007 Séville, Spain, (2007) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.