Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 01068 | |
Number of page(s) | 8 | |
Section | Advanced HVAC&R&S Technology | |
DOI | https://doi.org/10.1051/e3sconf/201911101068 | |
Published online | 13 August 2019 |
Validation of black-box performance models for a water-to-water heat pump operating under steady state and dynamic loads
Catalonia Institute for Energy Research (IREC), Energy Efficiency in Systems, Buildings and Communities Group, Jardins de les Dones de Negre 1 2ª, 08930, Sant Adrià de Besòs (Barcelona), Spain
* Corresponding author: jsalom@irec.cat
The use of simple mathematical models for describing the behaviour of heat pumps is important for assessing the energy performance of this equipment when installed in buildings. However, because of their simplicity, commonly used simple models, may not be able to fully account for the dynamic performance of heat pumps during transient phases. In this study, different performance black box models for an on-off water-to-water heat pump are validated by comparison with laboratory experimental results at steady state and dynamic cycling conditions. The models range from the solution based on the interpolation on the heat pump performance map to the detailed dynamic solution that combines correlations for the quasi-steady state operation and activation functions to model the transient phases. The output temperatures, electrical and thermal power and coefficient of performance from simulations were compared with experimental data from a water-to-water heat pump of 40.5 kW nominal heating capacity operating under cycling conditions. After validation with experiments, annual energy performance simulations of a tertiary building provided with a heat pump were conducted. These simulations quantifying the uncertainty expected when using heat pump performance models in simulation environments for estimating their annual energy performance.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.