Issue |
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
|
|
---|---|---|
Article Number | 04011 | |
Number of page(s) | 8 | |
Section | Sediment and pollutant dynamics in rivers | |
DOI | https://doi.org/10.1051/e3sconf/20184004011 | |
Published online | 05 September 2018 |
Using high-resolution bedload transport tracer measurements to investigate the characteristics of bedload transport over a large urban flood event
1
Università degli Studi di Brescia, Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), 25128 Brescia, Italy
2
University of Waterloo, Department of Civil and Environmental Engineering, N2L 3G1 Waterloo ( ON), Canada
* Corresponding author: f.berteni001@unibs.it
Channel morphological change is often evaluated by employing sediment transport models since field data during high magnitude low frequency events is rarely available. However, sediment transport rate estimates are heuristic at best to within 1 - 3 orders of magnitude. Mimico Creek is an urban gravel-bed channel in Southern Ontario, Canada that has undergone intensive event-based sediment transport sampling and inter-event bed material particle tracking over a three-year period. A HEC-RAS model was developed of the study reach and calibrated to a series of discharge events where in-situ bedload sampling occurred. Both step-wise discharge and unsteady flow simulations were evaluated to compare sediment transport rates for a range of transport models which included the Meyer-Peter Müller and the Wilcock-Crowe. Calibration curves were developed to estimate sediment discharge in Mimico Creek. The results of the calibrated model were used to calculate the mean travel distance of bed material using the expression for the volumetric rate of bed material transport. Results from the modelling exercise found mean travel distances were similar and in some cases larger than those observed from field measurements, considering both mobile and immobile particles.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.