Issue |
E3S Web Conf.
Volume 79, 2019
International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2018)
|
|
---|---|---|
Article Number | 02011 | |
Number of page(s) | 5 | |
Section | Research on Civil Engineering and Geological Phenomena | |
DOI | https://doi.org/10.1051/e3sconf/20197902011 | |
Published online | 15 January 2019 |
The indoor model test of loess landslide instability induced by artificial rainfall in Tianshui area
Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
* Corresponding author: Peng Xin: xinpengcugs@126.com
The loess slope stability is influenced by rainfall and other factors. In order to find out the mechanism of loess slope instability, especially the influence of rainfall intensity and slope, the indoor model test was performed to study rainfall-induced loess landslide in Tianshui area, Gansu Province. Slope gradient and rainfall intensity are considered as variables, and their influence on slope stability are analyzed based on monitoring of soil suction and water content, and slope deformation process. The results show that the higher the rainfall intensity, the faster the infiltration rate. The volumetric moisture rate under heavy rainfall is more than 10% under small rainfall intensity. The steeper the slope, the lower the infiltration rate for the slope model. The loess slope is prone to overall sliding from bottom to top under the heavy rainfall, and easily lead to down-top retrogressive landslide under light rain.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.