Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 08008 | |
Number of page(s) | 6 | |
Section | Multidimensional modelling and thermal bridges | |
DOI | https://doi.org/10.1051/e3sconf/202017208008 | |
Published online | 30 June 2020 |
The influence of polyisocyanurate (PIR) facing on the heat transfer through the corners of insulated building partitions
Kaunas University of Technology, Institute of Architecture and Construction, Tunelio str. 60, 44405 Kaunas, Lithuania
* Corresponding author: tomas.makaveckas@ktu.edu
Prefabricated products made of polyisocyanurate (PIR) thermal insulation material covered with cardboard, plastic, aluminium or composite facings are used for thermal insulation of building envelopes. The facing of these products is selected according to their conditions of use, and the effect of the facing on the declared thermal properties of the product depend only on water vapor diffuse properties of the facing. However, at the corners of the building where these products are joined, facings can be in the direction of the heat flux movement and significantly increase heat transfer through the longitudinal thermal bridge formed in the corner of the building. After analysing the solutions for installation of PIR thermal insulation products on the walls and roof corners of buildings, calculations of the heat transfer coefficients of the linear thermal bridges were made, and the influence of various facings and different structural solutions on the heat transfer coefficient value of the thermal bridge was determined. Aluminium foil facing have the greatest influence, but other facings must also be considered. The structural solutions with the greatest increase in the heat transfer due to the effect of the facing were selected, and the influence to the thermal and air tightness properties of the structural solution when facing is removed were analysed, the stability of thermal properties of the thermal insulation material were analysed as well. Proposals for joining PIR thermal insulation products with heat-conductive facings in the corners of buildings were prepared.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.