Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 02028 | |
Number of page(s) | 6 | |
Section | Teoretical and Numerical Models | |
DOI | https://doi.org/10.1051/e3sconf/202019502028 | |
Published online | 16 October 2020 |
Evaluation of direct shear strength of compacted bentonite having pore-water pressure
1 Department of Civil Engineering, Ashikaga University, Tochigi, Japan
2 Nuclear Waste Technology Department, OBAYASHI CORPORATION, Tokyo, Japan
* Corresponding author: tomo@ashitech.ac.jp
Safety of great deep repository design has been investigated for high-level radioactive waste disposal system in several countries such as Belgium, Canada, China, France, Germany, Japan, Sweden and Switzerland. The repository of the disposal is in most cases based on the concept of a multi-barrier system using the host rock barrier formation and a man-made barrier formation. The man-made barrier consists of high expansive bentonite. Thermal-hydro-mechanical behaviour simulation models were developed, including some parameters described by experimental works. The complex phenomena due to the transition into saturation and chemical reactions at the bentonite barrier system have been explained. This study focused on direct shear strength for compacted bentonite related to some factors induced by uncertainty problems such as hydration effect and pore-water pressure. Measured shear strength properties of compacted bentonite had been determined at high suction values. Also, it is clear that there is some influence of direct shear speed on direct shear strength both under unsaturated-saturated conditions. A modified direct shear apparatus was used in this study to observe changes in shear strength with increments of pore-water pressures.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.