Issue |
E3S Web Conf.
Volume 206, 2020
2020 2nd International Conference on Geoscience and Environmental Chemistry (ICGEC 2020)
|
|
---|---|---|
Article Number | 03008 | |
Number of page(s) | 4 | |
Section | Geohydrology And Ocean Resources Exploration And Survey | |
DOI | https://doi.org/10.1051/e3sconf/202020603008 | |
Published online | 11 November 2020 |
Numerical simulation study on diffusion of temperature drainage in wide and shallow water in a refinery integration project
Laboratory of Waterway Environmental Protection Technology, Tianjin Water Transport Engineering Science Research Institute, Tianjin 300456, China
* Corresponding author: 56369932@qq.com
The numerical simulation of tidal current field in wide and shallow waters (Naochao River) of Caofeidian industrial zone is carried out by using a two-dimensional hydrodynamic model, taking the discharge problem of temperature and drainage in a refinery integration project as an example. Taking the tidal current field as the hydrodynamic condition of the temperature drainage transport simulation, the concentration distribution of the temperature drainage in the receiving water area was predicted by using the two-dimensional convection-diffusion model of the temperature drainage, and the change of the temperature rise line and its influence were analyzed. The results showed that the water area affected by temperature rise in winter and summer were 0.28km2 and 0.35km2, respectively, when the project was discharged separately. The existing temperature displacement of China Resources Power Plant in the superposition area is: 19.1km2 in winter and 1.64km2 in summer under the influence of temperature rise. By analyzing the influence degree of wide and shallow water (Naochao River) drainage outlet on temperature rise, the conclusion that the layout of drainage outlet should be further optimized is given. conclusion that the layout of drainage outlet should be further optimized is given.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.