Issue |
E3S Web Conf.
Volume 355, 2022
2022 Research, Invention, and Innovation Congress (RI²C 2022)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 7 | |
Section | Energy Technology | |
DOI | https://doi.org/10.1051/e3sconf/202235501004 | |
Published online | 12 August 2022 |
Dilute inorganic acid pretreatment of mixed residues of Cocos nucifera (coconut) for recovery of reducing sugar: optimization studies
1 Department of Chemical and Process Engineering, TGGS, King Mongkut’s University of Technology North Bangkok, Thailand
2 Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana
* Corresponding author: mpgundupalli@gmail.com
Inorganic acids, such as sulphuric acid, hydrochloric acid, and nitric acid are widely used for the pretreatment of lignocellulosic biomass for bioenergy production. In this study, the effect of different acids on the recovery of reducing sugar from coconut residues (coir and pith) mixed in different ratios was studied. The pretreatment conditions for different acids were optimized using response surface methodology (RSM). The independent variables, such as biomass ratio, time and acid concentration were considered for the optimization studies with reducing sugar as the dependent variable. The maximum recovery of reducing sugar (45%) from mixed biomass was observed during nitric acid (NA) pretreatment. The recovery of reducing sugar was lower for hydrochloric acid (HA) and sulphuric acid (SA). The lower yield was attributed to the possible formation of sugar degradation compounds during acid pretreatment. Therefore, NA pretreatment was found suitable for mixed biomass compared to other acids. Further studies are required to understand the effect of NA pretreatment through a detailed study of liquid hydrolysate and the introduction of the saccharification process. Mixed biomass benefits the biorefinery industries for sustainable bioenergy production.
Key words: Inorganic acid / pretreatment / reducing sugar / optimization / coconut
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.