Issue |
E3S Web Conf.
Volume 366, 2023
The 2021 International Symposium of the Society of Core Analysts (SCA 2021)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202336601015 | |
Published online | 27 January 2023 |
Micromechanics Digital Rock: Parameterization of Consolidation Level using a Grain Contact Model
Dassault Systèmes, 343 Sansome St San Francisco, CA, USA
* Corresponding author: zhuang.sun@3ds.com
The mechanical behaviour of sedimentary rocks is conditioned by the interactions at the grain-grain contacts. We present a micromechanics digital rock workflow based on a cohesive contact model and introduce a general parameterization that can capture two extreme contact behaviours: free grains and fixed grains, as well as any intermediate degree of grain consolidation. With this parametric cohesive contact model, we can simulate a wide range of sedimentary rocks, from unconsolidated to well-consolidated rocks. We present a benchmark study on several samples and compare with laboratory-measured elastic moduli to calibrate its degree of consolidation. Simulations that do not include the grain contact modelling, tend to overestimate the elastic moduli, which manifests the significance of this contribution to capture well the grain contact behaviour. To demonstrate the impact of properly capturing the degree of consolidation on the rock strength and failure pattern, we present results for numerical uniaxial compression testing. This workflow provides physics-based solution to complex grain contact behaviour, which complements laboratory core analysis, and can be useful to reveal underlying grain-scale processes governing rock mechanical behaviour.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.