Open Access
Issue |
E3S Web Conf.
Volume 366, 2023
The 2021 International Symposium of the Society of Core Analysts (SCA 2021)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202336601015 | |
Published online | 27 January 2023 |
- H. Andrä, N. Combaret, J. Dvorkin, E. Glatt, J. Han, M. Kabel, Y. Keehm, F. Krzikalla, M. Lee, and C. Madonna, Digital Rock Physics Benchmarks—Part I: Imaging and Segmentation, Comput. Geosci. 50, 25 (2013). [CrossRef] [Google Scholar]
- H. Andrä, N. Combaret, J. Dvorkin, E. Glatt, J. Han, M. Kabel, Y. Keehm, F. Krzikalla, M. Lee, and C. Madonna, Digital Rock Physics Benchmarks—Part II: Computing Effective Properties, Comput. Geosci. 50, 33 (2013). [CrossRef] [Google Scholar]
- R. Xu, B. Crouse, D. M. Freed, A. Fager, G. R. Jerauld, N. Lane, and Q. Sheng, Continuous vs Discontinuous Capillary Desaturation and Implications for IOR/EOR, in Paper SCA2018-066 Presented at at the International Symposium of the Society of Core Analysts Held in Trondheim, Norway (2018). [Google Scholar]
- B. Crouse, D. M. Freed, N. Koliha, G. Balasubramanian, R. Satti, D. Bale, and S. Zuklic, A Lattice-Boltzmann Based Method Applied to Digital Rock Characterization of Perforation Tunnel Damage, in Paper SCA2016-058 Presented at the International Symposium of the Society of Core Analysts Held in Snow Mass, Colorado, USA (2016). [Google Scholar]
- M. J. Blunt, Flow in Porous Media—Pore-Network Models and Multiphase Flow, Curr. Opin. Colloid Interface Sci. 6, 197 (2001). [CrossRef] [Google Scholar]
- J. Dvorkin, M. Armbruster, C. Baldwin, Q. Fang, N. Derzhi, C. Gomez, B. Nur, and A. Nur, The Future of Rock Physics: Computational Methods vs. Lab Testing, First Break 26, (2008). [CrossRef] [Google Scholar]
- C. H. Arns, M. A. Knackstedt, M. V. Pinczewski, and W. B. Lindquist, Accurate Estimation of Transport Properties from Microtomographic Images, Geophys. Res. Lett. 28, 3361 (2001). [CrossRef] [Google Scholar]
- M. Andrew, H. Menke, M. J. Blunt, and B. Bijeljic, The Imaging of Dynamic Multiphase Fluid Flow Using Synchrotron-Based X-Ray Microtomography at Reservoir Conditions, Transp. Porous Media 110, 1 (2015). [CrossRef] [Google Scholar]
- A. K. Turner, F. H. Kim, D. Penumadu, and E. B. Herbold, Meso-Scale Framework for Modeling Granular Material Using Computed Tomography, Comput. Geotech. 76, 140 (2016). [CrossRef] [Google Scholar]
- C. H. Arns, M. A. Knackstedt, W. V. Pinczewski, and E. J. Garboczi, Computation of Linear Elastic Properties from Microtomographic Images: Methodology and Agreement between Theory and Experiment, Geophysics 67, 1396 (2002). [CrossRef] [Google Scholar]
- T. W. J. De Geus, J. Vondřejc, J. Zeman, R. H. J. Peerlings, and M. G. D. Geers, Finite Strain FFTBased Non-Linear Solvers Made Simple, Comput. Methods Appl. Mech. Eng. 318, 412 (2017). [CrossRef] [Google Scholar]
- M. M. Hossain, J. Arns, Z. Liang, Z. Chen, and C. H. Arns, Humidity Effects on Effective Elastic Properties of Rock: An Integrated Experimental and Numerical Study, J. Geophys. Res. Solid Earth 124, 7771 (2019). [CrossRef] [Google Scholar]
- M. A. Knackstedt, C. H. Arns, and W. V. Pinczewski, Velocity-Porosity Relationships, 1: Accurate Velocity Model for Clean Consolidated Sandstones, Geophysics 68, 1822 (2003). [CrossRef] [Google Scholar]
- B. Crouse, S. Gill, J. Bautista, G. Balasubramanian, and D. Freed, Digital Prediction of Porosity and Permeability Variation of Unconsolidated Sands Caused by Over-Burden Pressure, in NAFEMS World Congress (2019). [Google Scholar]
- A. B. Andhumoudine, X. Nie, Q. Zhou, J. Yu, O. I. Kane, L. Jin, and R. R. Djaroun, Investigation of Coal Elastic Properties Based on Digital Core Technology and Finite Element Method, Adv. Geo-Energy Res. 5, 53 (2021). [CrossRef] [Google Scholar]
- S. BoggsJr, Principles of Sedimentology and Stratigraphy (Pearson Education, 2014). [Google Scholar]
- E. J. Garboczi and J. G. Berryman, Elastic Moduli of a Material Containing Composite Inclusions: Effective Medium Theory and Finite Element Computations, Mech. Mater. 33, 455 (2001). [CrossRef] [Google Scholar]
- S. Meille and E. J. Garboczi, Linear Elastic Properties of 2D and 3D Models of Porous Materials Made from Elongated Objects, Model. Simul. Mater. Sci. Eng. 9, 371 (2001). [CrossRef] [Google Scholar]
- E. H. Saenger, Numerical Methods to Determine Effective Elastic Properties, Int. J. Eng. Sci. 46, 598 (2008). [CrossRef] [Google Scholar]
- C. H. Arns, M. Madadi, A. P. Sheppard, and M. A. Knackstedt, Linear Elastic Properties of Granular Rocks Derived from X-Ray-CT Images, in SEG Technical Program Expanded Abstracts 2007 (Society of Exploration Geophysicists, 2007), pp. 1711–1715. [Google Scholar]
- N. Saxena, R. Hofmann, A. Hows, E. H. Saenger, L. Duranti, J. Stefani, A. Wiegmann, A. Kerimov, and M. Kabel, Rock Compressibility from Microcomputed Tomography Images: Controls on Digital Rock Simulations, Geophysics 84, WA127 (2019). [CrossRef] [Google Scholar]
- J. Fredrich, N. Lane, and J. Toms, Image-Based Direct Numerical Simulation of Petrophysical Properties under Simulated Stress and Strain Conditions, U.S. Patent 9,348,056 (24 May 2016). [Google Scholar]
- Z. Sun, R. Salazar-Tio, L. Duranti, B. Crouse, A. Fager, and G. Balasubramanian, Prediction of Rock Elastic Moduli Based on a Micromechanical Finite Element Model, Comput. Geotech. 135, 104149 (2021). [CrossRef] [Google Scholar]
- D. Legland, I. Arganda-Carreras, and P. Andrey, MorphoLibJ: Integrated Library and Plugins for Mathematical Morphology with ImageJ, Bioinformatics 32, 3532 (2016). [PubMed] [Google Scholar]
- S. Qin, R. McLendon, V. Oancea, and A. M. Beese, Micromechanics of Multiaxial Plasticity of DP600: Experiments and Microstructural Deformation Modeling, Mater. Sci. Eng. A 721, 168 (2018). [CrossRef] [Google Scholar]
- Abaqus, Abaqus 6.10 Online Documentation, Abaqus User Subroutines Ref. Man. (2010). [Google Scholar]
- M. Obermayr, K. Dressler, C. Vrettos, and P. Eberhard, A Bonded-Particle Model for Cemented Sand, Comput. Geotech. 49, 299 (2013). [CrossRef] [Google Scholar]
- D. O. Potyondy and P. A. Cundall, A Bonded-Particle Model for Rock, Int. J. Rock Mech. Min. Sci. 41, 1329 (2004). [CrossRef] [Google Scholar]
- Z. Sun, D. N. Espinoza, and M. T. Balhoff, Discrete Element Modeling of Indentation Tests to Investigate Mechanisms of CO2 -Related Chemo-Mechanical Rock Alteration, J. Geophys. Res. Solid Earth 121, 7867 (2016). [CrossRef] [Google Scholar]
- H. Harkness, G. Ang, P. Vijalapura, and D. Cojocaru, Contact Stress Accuracy with Robust and Broadly Applicable Implicit Contact Algorithm, in NWC (Nafems World Congress) (2011). [Google Scholar]
- F. D. E. Latief, B. Biswal, U. Fauzi, and R. Hilfer, Continuum Reconstruction of the Pore Scale Microstructure for Fontainebleau Sandstone, Phys. A Stat. Mech. Its Appl. 389, 1607 (2010). [CrossRef] [Google Scholar]
- V. Brotons, R. Tomás, S. Ivorra, A. Grediaga, J. Martínez-Martínez, D. Benavente, and M. GómezHeras, Improved Correlation between the Static and Dynamic Elastic Modulus of Different Types of Rocks, Mater. Struct. 49, 3021 (2016). [CrossRef] [Google Scholar]
- J. M. Ide, Comparison of Statically and Dynamically Determined Young’s Modulus of Rocks, Proc. Natl. Acad. Sci. U. S. A. 22, 81 (1936). [CrossRef] [PubMed] [Google Scholar]
- R. Sain, Numerical Simulation of Pore-Scale Heterogeneity and Its Effects on Elastic, Electrical and Transport Properties (Stanford University, 2010). [Google Scholar]
- S. N. Domenico, Elastic Properties of Unconsolidated Porous Sand Reservoirs, Geophysics 42, 1339 (1977). [CrossRef] [Google Scholar]
- M. A. Zimmer, Seismic Velocities in Unconsolidated Sands: Measurements of Pressure, Sorting, and Compaction Effects (Stanford University, 2004). [Google Scholar]
- B. E. Buschkuehle, F. J. Hein, and M. Grobe, An Overview of the Geology of the Upper Devonian Grosmont Carbonate Bitumen Deposit, Northern Alberta, Canada, Nat. Resour. Res. 16, 3 (2007). [CrossRef] [Google Scholar]
- R. Hilfer and T. Zauner, High-Precision Synthetic Computed Tomography of Reconstructed Porous Media, Phys. Rev. E 84, 62301 (2011). [CrossRef] [Google Scholar]
- C. E. Fairhurst and J. A. Hudson, Draft ISRM Suggested Method for the Complete Stress-Strain Curve for Intact Rock in Uniaxial Compression, Int. J. Rock Mech. Min. Sci. 36, 279 (1999). [CrossRef] [Google Scholar]
- Z. T. Bieniawski and M. J. Bernede, Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials: Part 1. Suggested Method for Determining Deformability of Rock Materials in Uniaxial Compression, in International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 16 (Elsevier, 1979), pp. 138–140. [CrossRef] [Google Scholar]
- E. Tuncay and N. Hasancebi, The Effect of Length to Diameter Ratio of Test Specimens on the Uniaxial Compressive Strength of Rock, Bull. Eng. Geol. Environ. 68, 491 (2009). [CrossRef] [Google Scholar]
- A. B. Hawkins, Aspects of Rock Strength, Bull. Eng. Geol. Environ. 57, 17 (1998). [CrossRef] [Google Scholar]
- D.-H. Han, Effects of Porosity and Clay Content on Acoustic Properties of Sandstones and Unconsolidated Sediments, Stanford Univ., CA (USA), 1987. [Google Scholar]
- P. Baud, T. Wong, and W. Zhu, Effects of Porosity and Crack Density on the Compressive Strength of Rocks, Int. J. Rock Mech. Min. Sci. 67, 202 (2014). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.