Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 07004
Number of page(s) 8
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Physical and Numerical Modelling
DOI https://doi.org/10.1051/e3sconf/202454407004
Published online 02 July 2024
  1. Balay, S., Gropp, W.D., McInnes, L.C., and Smith, B.F., 1997. “Efficient management of parallelism in object-oriented numerical software libraries.” In Modern Software Tools for Scientific Computing, edited by E. Arge, A. M. Bruaset, and H. P. Langtangen. 163–202. Boston, MA, US. https://doi.org/10.1007/978-1-4612-1986-6_8. [Google Scholar]
  2. Chareyre, B., Cortis, A., Catalano, E., and Barthélemy, E. 2012. “Pore-scale modeling of viscous flow and induced forces in dense sphere packings.” Transport in porous media, 94(2), 595–615. https://doi.org/10.1007/s11242-012-0057-2 [CrossRef] [Google Scholar]
  3. Cundall, P.A., and Strack, O.D.L., 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1), 47–65. https://doi.org/10.1680/geot.1979.29.1.47 [CrossRef] [Google Scholar]
  4. El Shamy, U., De Leon, O., and Wells, R. 2013. “Discrete element method study on effect of shear-induced anisotropy on thermal conductivity of granular soils.” Int. J. Geomech. 13 (1). 57–64. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000165. [CrossRef] [Google Scholar]
  5. Itasca. 2007. PFC3D version 4.0 user manual. Minneapolis: Itasca Consulting Group. [Google Scholar]
  6. Khalili, M. H., Roux, J.N., Pereira, J.M., Brisard, S., and Bornert, M. 2017. “Numerical study of one-dimensional compression of granular mate- rials. II. Elastic moduli, stresses, and microstructure.” Phys. Rev. E 95 (3): 032908. https://doi.org/10.1103/PhysRevE.95.032908. [CrossRef] [PubMed] [Google Scholar]
  7. Knight, C., 2021. mesh-sphere-packing. https://github.com/chrisk314/mesh-sphere- packing. [Google Scholar]
  8. Knight, C., O’Sullivan, C., van Wachem, B., and Dini, D., 2020. “Computing drag and interactions between fluid and polydisperse particles in saturated granular materials.” Comput. Geotech. 117, 103210. https://doi.org/10.1016/j.compgeo.2019.103210. [Google Scholar]
  9. Kuhn, M.R., Sun, W.C., and Wang, Q. 2015. “Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability.” Acta Geotechnica 10(4), 399–419. https://doi.org/10.1007/s11440-015-0397-5 [CrossRef] [Google Scholar]
  10. Makse, H. A., Gland, N., Johnson, D. L., and Schwartz, L. M. 1999. “Why effective medium theory fails in granular materials.” Phys. Rev. Lett. 83 (24): 5070. https://doi.org/10.1103/PhysRevLett.83.5070. [CrossRef] [Google Scholar]
  11. Morimoto, T., O’Sullivan, C., and Taborda, D. M. 2022a. “Exploiting DEM to Link Thermal Conduction and Elastic Stiffness in Granular Materials.” Journal of Engineering Mechanics, 148(2), 04021139. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002054 [CrossRef] [Google Scholar]
  12. Morimoto, T., Zhao, B., Taborda, D. M., and O’Sullivan, C. 2022b. “Critical appraisal of pore network models to simulate fluid flow through assemblies of spherical particles.” Computers and Geotechnics, 150, 104900. https://doi.org/10.1016/j.compgeo.2022.104900 [Google Scholar]
  13. Plimpton, S. 1995. “Fast parallel algorithms for short-range molecular dynamics.” Journal of Computational Physics, 117(1), 1–19. https://doi.org/10.1006/jcph.1995.1039 [CrossRef] [Google Scholar]
  14. Shire, T., O’Sullivan, C., Barreto, D., and Gaudray, G. 2013. “Quantifying stress-induced anisotropy using inter-void constrictions.” Géotechnique 63(1), 85–91. https://doi.org/10.1680/geot.11.T.020 [CrossRef] [Google Scholar]
  15. Si, H., 2015. “TetGen, a Delaunay-based quality tetrahedral mesh generator.” ACM Trans. Math. Software (TOMS) 41 (2), 1–36. https://doi.org/10.1145/2629697. [CrossRef] [Google Scholar]
  16. Walton, K. (1987). The effective elastic moduli of a random packing of spheres. Journal of the Mechanics and Physics of Solids, 35(2), 213–226. https://doi.org/10.1016/0022-5096(87)90036-6 [CrossRef] [Google Scholar]
  17. Wang, L. 2021. “Vertical response of a pile embedded inhighly-saturated soil with compressible pore fluid and anisotropic permeability.” Computers and Geotechnics, 140, 104462. https://doi.org/10.1016/j.compgeo.2021.104462 [Google Scholar]
  18. Weller, H.G., Tabor, G., Jasak, H., and Fureby, C. 1998. “A tensorial approach to computational continuum mechanics using object-oriented techniques.” Comput. Phys. 12 (6), 620–631. https://doi.org/10.1063/1.168744. [CrossRef] [Google Scholar]
  19. Wong, R.C.K. 2003a. “A model for strain-induced permeability anisotropy in deformable granular media.” Canadian Geotechnical Journal. 40(1), 95–106. https://doi.org/10.1139/t02-088 [CrossRef] [Google Scholar]
  20. Wong, R.C.K. 2003b. “Strain-induced anisotropy in fabric and hydraulic parameters of oil sand in triaxial compression.” Canadian Geotechnical Journal. 40(3), 489–500. https://doi.org/10.1139/t03-005 [CrossRef] [Google Scholar]
  21. Zick, A.A., and Homsy, G.M., 1982. “Stokes flow through periodic arrays of spheres.” J. Fluid Mech. 115, 13–26. https://doi.org/10.1017/S0022112082000627. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.