Open Access
E3S Web of Conferences
Volume 1, 2013
Proceedings of the 16th International Conference on Heavy Metals in the Environment
Article Number 25003
Number of page(s) 4
Section Heavy Metals in Waste and Wastewater
Published online 23 April 2013
  1. Bac BH, Song Y, Moon Y, Kim MH, Kang IM. Effective utilization of incinerated municipal solid waste incineration ash: zeolitic material synthesis and silica extraction. Waste Manage Res 2010; 28:714–722. [CrossRef] [Google Scholar]
  2. Chiang YW, Ghyselbrecht K, Santos RM, Meesschaert B, Martens JA. Synthesis of zeolitic-type adsorbent material from municipal solid waste incinerator bottom ash and its application in heavy metal adsorption. Catal Today 2011; doi:10.1016/j.cattod.2011.11.002. [Google Scholar]
  3. Chiang YW, Santos RM, Ghyselbrecht K, Cappuyns V, Martens JA, Swennen R, Van Gerven T, Meesschaert B. Strategic selection of an optimal sorbent mixture for in-situ remediation of heavy metal contaminated sediments: framework and case study. J Environ Manage 2012; doi:10.1016/j.jenvman.2012.03.037. [Google Scholar]
  4. Dimović S, Smičiklas I, Plećaš I, Antonović D, Mitrić M. Comparative study of differently treated animal bones for Co2+ removal. J Hazard Mater 2009; 164:279–287. [CrossRef] [PubMed] [Google Scholar]
  5. Lin C-F, Lo S-S, Lin H-Y, Lee Y. Stabilization of cadmium contaminated soils using synthesized zeolite. J Hazard Mater 1998;60:217–226. [CrossRef] [Google Scholar]
  6. Panuccio MR, Sorgonà A, Rizzo M, Cacco G. Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies. J Environ Manage 2009;90:364–374. [CrossRef] [PubMed] [Google Scholar]
  7. Peng JF, Song YH, Yuan P, Cui X-Y, Qiu G-L. The remediation of heavy metals contaminated sediment. J Hazard Mater 2009;161:633–640. [Google Scholar]
  8. Penilla RP, Bustos AG, Elizalde SG. Immobilization of Cs, Cd, Pb and Cr by synthetic zeolites from Spanish low-calcium coal fly ash. Fuel 2006;85:823–832. [CrossRef] [Google Scholar]
  9. Qian G, Chen W, Lim TT, Chui P. In-situ stabilization of Pb, Zn, Cu, Cd and Ni in the multi-contaminated sediments with ferrihydrite and apatite composite additives. J Hazard Mater 2009;170:1093–1100. [CrossRef] [PubMed] [Google Scholar]
  10. Ruggieri F, Marín V, Gimeno D, Fernandez-Turiel JL, García-Valles M, Gutierrez L. Application of zeolitic volcanic rocks for arsenic removal from water. Eng Geol 2008;101:245–250. [CrossRef] [Google Scholar]
  11. Sarkar D, Makris KC, Datta R. Current trends and future directions in environmental geochemistry research, in: Sarkar, D., Datta, R., Hannigan, R. (Eds.), Developments in Environmental Science, Volume 5, 2007 Elsevier Ltd, pp. 753–757. [CrossRef] [Google Scholar]
  12. Shevade S, Ford RG. Use of synthetic zeolites for arsenate removal from pollutant water. Water Res 2004;38:3197–3204. [CrossRef] [PubMed] [Google Scholar]
  13. Van Gerven T, Van Keer E, Arickx S, Jaspers M, Wauters G, Vandecasteele C. Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling. Waste Manage. 2005;25:291–300. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.