Open Access
Issue |
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
|
|
---|---|---|
Article Number | 18016 | |
Number of page(s) | 6 | |
Section | Forecasting and warning | |
DOI | https://doi.org/10.1051/e3sconf/20160718016 | |
Published online | 20 October 2016 |
- Blöschl G. and Montanari A. (2010). Climate change impacts–throwing the dice? Hydrological Processes, 24, 374–381 [Google Scholar]
- Centre for Research on the Epidemiology of Disasters (CRED) (2004). EM-DAT The International Disaster Database. Univ. Chatolique de Louvain, Brussels. http://www.emdat.be/database [Google Scholar]
- Di Baldassarre G., Montanari A., Lius H., Koutsoyiannis D., Brandimante L., and Blöschl G. (2010). Flood Facilities in Africa: from diagnosis to mitigation. Geophysics Reserch Letter, 37, L22402, doi:10.1029/2010GL045467. [Google Scholar]
- Kleinen T. and Petschel-Held G. (2007). Integrated assessment of changes in flooding probabilities due to climate changes. Climate Change, 81, 283–312. [CrossRef] [Google Scholar]
- Marchi L., Borga M., Preciso E., and Gaume E. (2010). Characterisation of selected estreme flash floods in Europe and implications for flood risk management. Journal of Hydrology, 394, 118–133. [Google Scholar]
- OECD (2012). OECD Environmental Outlook to 2050: The Consequences of Inaction. Paris: OECD. [Google Scholar]
- Camarasa-Belmonte A.M., and Soriano-Garcia J.S. (2012). Flood risk assessment and mapping in periurban Mediterranean environments using hydrogeomorphology. Application to ephemeral streams in the Valencia region (eastern Spain). Landscape and Urban Planning, 104(2), 189–200 [CrossRef] [Google Scholar]
- Candela A., Noto V.L., and Aronica G.T. (2005). Influence of surface roughness in hydrological response of semiarid catchments. Journal of Hydrology, 313, 119–131 [CrossRef] [Google Scholar]
- Gaume E., and Borga M. (2008). Post-flood field investigations in upland catchments after major flash floods: proposal of a methodology and illustrations. Flood Risk Management, 1, 175–189 [Google Scholar]
- Lumbroso D. and Gaume E. (2012). Reducing the uncertainty in indirect estimates of extreme flash flood discharges. Journal of Hydrology, 414-415, 16–30 [CrossRef] [Google Scholar]
- Ravazzani G., Mancini M. and Meroni C. (2009). Design hydrograph and routing scheme for flood mapping in a dense urban area. Urban Water Journal, 6(3), 221–231 [CrossRef] [Google Scholar]
- Melo N., Santos B.F. and Jorge L. (2015). A prototype tool for dynamic pluvial-flood emergency planning. Urban Water Journal, 12(1), 79–88 [CrossRef] [Google Scholar]
- Martina M.L., Todini E. and Libralon A. (2006). A Bayesian decision approach to rainfall thresholds based flood warning. Hydrologic Earth System Sciences, 10, 413–426 [CrossRef] [Google Scholar]
- Diakakis M. (2012). Rainfall threshold for flood triggering. The case of Marathonasin Greece. Natural Hazards, 60(3), 789–800 [CrossRef] [Google Scholar]
- Wu S.J., Hs C.T., Lien H.C. and Chang C.H. (2015). Modeling the effect of uncertainties in rainfall characteristics on flash flood warning based on rainfall thresholds. Natural Hazards, 75, 1677–1711 [CrossRef] [Google Scholar]
- Neary D.G. and Swift L. W. (1987). Rainfall thresholds for triggering a debris flow avalanching event in the southern Appalachian Mountains, Rewiews in Engineering Geology, 7, 81–95 [Google Scholar]
- Crosta G.B. and Frattini P. (2000). Rainfall thresholds for triggering soil slips and debris flow. Proceeding of 2nd plinius conference on mediterranean storms, Siena, Italy, 16–18 [Google Scholar]
- Capenter T.M., Spefslage J.A., Georgakakos K.P., Sweeney T. and Fread D.L. (1999). National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems. Journal of Hydrology, 224, 21–44 [CrossRef] [Google Scholar]
- Amadio P., Mancini M., Menduni G., Rabuffetti D. and Ravazzani G. (2003). A real time flood forecasting system based on rainfall thresholds working on the Arno watershed: Definition and reliability analysis. In: Proceedings of the 5th EGS Plinius Conference, Corsica, France [Google Scholar]
- Georgakakos K.P. (2006) Analytical results for operational flash flood guidance, Journal of Hydrology, 317, 81–103, 2006 [CrossRef] [Google Scholar]
- Norbiato D., Borga M., Esposti S.D., Gaume E. and Anquetin S. (2008) Flash flood warning based on rainfall thresholds and soil moisture conditions: an assessment for gauged and ungauged basins. Journal of Hydrology, 362, 274–290 [CrossRef] [Google Scholar]
- Montesarchio V., Lombardo F. and Napolitano F., (2009) Rainfall thresholds and flood warning: an operative case study. Natural Hazards and Earth System Sciences, 9, 135–144. [CrossRef] [Google Scholar]
- Golian S., Saghafian B., and Maknoon R. (2010) Derivation of probabilistic thresholds of spatially distributed rainfall for flood forecasting. Water Resoures Management, 24(13),3547–3559 [CrossRef] [Google Scholar]
- Golian S., Saghafian B., Elmi M. and Maknoon R. (2011). Probabilistic rainfall thresholds for flood forecasting: evaluating different methodologies for modeling rainfall spatial dependence. Hydrological Processes, 25(13), 2046–2055. doi:10.1002/hyp.7956 [CrossRef] [Google Scholar]
- Samuels P. and Gouldby B. (2009). Language of risk. Project definitions, 2nd ed. Report T32-04-01. http://www.floodsite.net. [Google Scholar]
- Aronica G.T., Tucciarelli T. and Nasello C. (1998). 2D multilevel model for flood Wave propagation in flood-affected areas. Journal of Water Resources, Planning and Management, 124(4), 210–217 [CrossRef] [Google Scholar]
- Aronica G.T., Bates P.D. and Horritt M.S. (2002). Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrological Processes, 16, 2001–2016 [CrossRef] [Google Scholar]
- Horritt M. S., and Bates P. D. (2002). Evaluation of 1-D and 2-D models for predicting river flood inundation. Journal of Hydrology, 268, 87–99. [Google Scholar]
- Di Baldassarre G., Castellarin A., Montanari A. and Brath A. (2009). Probability weighted hazard maps for comparing different flood risk management strategies: a case study. Natural Hazards, doi:10.1007/s11069-009-9355-6. [Google Scholar]
- Neal J. C., Villanueva I., Wright N., Willis T., Fewtrell T. and Bates P. D. (2012). How much physical complexity is needed to model flood inundation? Hydrological Processes, 26, 2264–2282. [CrossRef] [Google Scholar]
- Pappenberger F., Beven K., Frodsham K., Romanowicz R. and Matgen P. (2007). Grasping the unavoidable subjectivity in calibration of flood inundation models: A vulnerability weighted approach, Journal of Hydrology, 333, 275–287. [CrossRef] [Google Scholar]
- Romanowicz R. and Beven K. (2003). Estimation of flood inundation probabilities as conditioned on event inundation maps. Water Resources Research, 39(3), 1073–1085. [CrossRef] [Google Scholar]
- Aronica G.T. and Lanza. L.G. (2005). Drainage efficiency in the urban environment. Hydrological Processes, 19(5), 1105–1119. [CrossRef] [Google Scholar]
- Huff F. A. (1967). Time distribution of rainfall in heavy storms, Water Resources Research, 3, 1007–1019. [CrossRef] [Google Scholar]
- Garcia-Guzman A. and Aranda-Oliver E. (1993). A stochastic model of dimensionless hyetograph, Water Resources Research, 29, 2363–2370. [CrossRef] [Google Scholar]
- Wu S.J., Tung Y.K. and Yang J.C. (2006). Stochastic generation of hourly rainstorm events. Stochastic Environmental Research on Risk Assessment, 21, 195–212. [CrossRef] [Google Scholar]
- Candela A. Brigandì G. and G.T. Aronica (2014). Estimation of synthetic flood design hydrographs using a distributed rainfall–runoff model coupled with a copula-based single storm rainfall generator, Natural Hazards and Earth System Sciences, 14, 1819–1833, doi:10.5194/nhess-14-1819-2014. [CrossRef] [Google Scholar]
- Chen A.S., Evans B., Djordjevi S. and Savic D.A., (2012). A coarse-grid approach to representing building blockage effects in 2D urban flood modelling. Journal of Hydrology, 426–427, 1–16 [Google Scholar]
- Néelz S. and Pender G. (2007). Sub-grid scale parameterisation of 2D hydrodynamic models of inundation in the urban area. ActaGeophysica, 55(1), 65–72 [Google Scholar]
- Yu D. and Lane S.N. (2006). Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: mesh resolution effects. Hydrological Processes, 20(7), 1541–1565 [Google Scholar]
- Zhou Q., Mikkelsen P.S., Halsnæs K., and Arnbjerg-Nielsen K. (2012). Frameworkfor economic pluvial flood risk assessment considering climate change effects and adaptation benefits. Journal of Hydrology, 414–415, 539–549 [CrossRef] [Google Scholar]
- Freni G. and Oliveri E. (2005). Mitigation of urban flooding: A simplified approach for distributed stormwater management practices selection and planning, Urban Water Journal, 2(4), 215–226. [CrossRef] [Google Scholar]
- Aronica G. T., Candela A., Fabio p. and M. Santoro (2012). Estimation of flood inundation probabilities using global hazard indexes based on hydrodynamic variables, Physics and Chemistry of the Earth, 42–44, 119–129 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.