Open Access
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
Article Number 02051
Number of page(s) 6
Section Bioenergy
Published online 26 November 2018
  1. M. Gozan, Teknologi Bioetanol Generasi Kedua [in Bahasa], Erlangga Pub. (2016) [Google Scholar]
  2. M. Galbe, and G. Zacchi, Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production. Adv Biochem Engin/Biotechnol, 108, pp.41–65 (2007). [CrossRef] [Google Scholar]
  3. Y.H.P. Zhang, M.E. Himmel, J.R. Mielenz, Outlook for cellulase improvement: screening and selection strategies. Biotechnology advances, 24(5), pp.452–81. (2006). [CrossRef] [PubMed] [Google Scholar]
  4. S.O. Kotchoni, E. Gachomo, B. Omafuvbe, O.O. Shonukan, Purification and Biochemical Characterization of Carboxymethyl Cellulase (CMCase) from a Catabolite Repression Insensitive Mutant of Bacillus pumilus. International Journal of Agriculture & Biology, 08(2), pp.286–292 (2006). [Google Scholar]
  5. X.C. Hao, X.B. Yu, and Z.L. Yan, Optimization of the Medium for the Production of Cellulase by the Mutant Trichoderma reesei WX-112 Using Response Surface Methodology. Food Technology Biotechnology, 44(1), pp.89–94 (2006). [Google Scholar]
  6. F. Otajevwo and H.S. Aluyi, Cultural Conditions Necessary For Optimal Cellulase Yield By Cellulolytic Bacterial Organisms As They Relate To Residual Sugars Released In Broth Medium. Nigerian Journal of Microbiology 24(1), pp.2168–2182 (2010). [Google Scholar]
  7. D. Deka, P. Bhargavi, A. Sharma, D. Goyal, M. Jawed, and A. Goyal, Enhancement of Cellulase Activity from a New Strain of Bacillus subtilis by Medium Optimization and Analysis with Various Cellulosic Substrates. Enzyme research 2011, 151656, p. 8 (2011). doi:10.4061/2011/151656 [CrossRef] [Google Scholar]
  8. H. Ariffin, N. Abdullah, M.S. Umi Kalsom, Y. Shirai and M.A. Hassan, Production and Characterisation of Cellulase by Bacillus Pumilus Eb3. International Journal of Engineering, 3(1), pp.47–53 (2006). [Google Scholar]
  9. J. Paul and A.K. Varma, Characterization of cellulose and hemicellulose degrading Bacillus sp. from termite infested soil. Current Science, 64(4), pp.262–266 (1993). [Google Scholar]
  10. S. Dahiya, N. Singh and J.S. Rana, Optimization of growth parameters of phytase producing fungus using RSM. Industrial Research, 68 (November), pp.955–959 (2009). [Google Scholar]
  11. M. Gozan, A.M. Biorata, S. Setyahadi, Variation of C/N ratio and fermentation time in response surface methodology for cellulase production from Bacillus sp. BPPT CC RK2. International Journal of Pharma and Bio Sciences, 4(4), pp. B1063–B1070 (2013). [Google Scholar]
  12. S.S. Rashid M.Z. Alam, M.I.A. Karim, M.H. Salleh, Optimization of the Nutrient Supplients for Cellulase Production with the Basal Medium Palm Oil Mill Effluent. Media, pp. 809–815 (2009). [Google Scholar]
  13. S.A. Jabasingh, and C.V. Nachiyar, A new combinational statistical approach for cellulase optimization in Aspergillus nidulans. Journal of Science and Technology, 3(8), pp.871–878 (2010). [Google Scholar]
  14. Mathworks, 2011. Response Surface Designs -MATLAB & Simulink Example. Available at: [Accessed January 3, 2012]. [Google Scholar]
  15. H. Riyanto, S.Y. Martowibowo, Optimization of Organic Rankine Cycle Waste Heat Recovery for Power Generation in a Cement Plant via Response Surface Methodology, Int. J. of Technol. Oct 01, pp 938–945 (2015) [CrossRef] [Google Scholar]
  16. T.I. Seo, B.U. Song, K.H. Seo, J.H. Cho, G.S. Yoon, A Study of Optimization of Machining Conditions in Micro End-Milling By Using Response Surface Design, Int. J. of Technol., Jun 01, pp 248–256 (2011) [Google Scholar]
  17. S.Z. Amraini, L.P. Ariyani, S. Setyahadi, H. Hermansyah, S.H. Rahman, D.H. Park, M. Gozan, Production and Characterization of Cellulase from E. coli EgRK2 Recombinant based, Biotechnology and Bioprocess Engineering 22: 287–295 (2017). [CrossRef] [Google Scholar]
  18. L.J. Yin, P.S. Huang, and H.H. Lin, Isolation of cellulase-producing bacteria and characterization of the cellulase from the isolated bacterium Cellulomonas sp. YJ5. Journal of agricultural and food chemistry, 58(17), pp.9833–7 (2010). [CrossRef] [PubMed] [Google Scholar]
  19. G.L. Miller, Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), pp.426–428 (1959). [CrossRef] [Google Scholar]
  20. O.H. Lowry, R.J. Randall and A. Lewis, Protein Measurement with The Folin Phenol Reagent. Journal of Biological Chemistry (1951) [Google Scholar]
  21. L.C.A. da Silva, T.L. Honorato, R.S. Cavalcante, T.T. Franco, and S. Rodrigues, Effect of pH and Temperature on Enzyme Activity of Chitosanase Produced Under Solid Stated Fermentation by Trichoderma spp. Indian J Microbiol. 52(1): 60–65 (2012) [CrossRef] [PubMed] [Google Scholar]
  22. G. Immanuel, R. Dhanusha, P. Prema, A. Palavesam, Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. International Journal Environmental Science Technology 2(1), pp.25–34 (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.