Open Access
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
Article Number 03035
Number of page(s) 6
Section Multifunctional and Advanced Materials
Published online 26 November 2018
  1. Huai, Y., R.V. Melnik, and P.B. Thogersen, Computational analysis of temperature rise phenomena in electric induction motors. Applied Thermal Engineering, 2003. 23(7): p. 779–795. [Google Scholar]
  2. Farsane, K., P. Desevaux, and P. Panday, Experimental study of the cooling of a closed type electric motor. Applied Thermal Engineering, 2000. 20(14): p. 1321–1334. [Google Scholar]
  3. Li, H., Cooling of a permanent magnet electric motor with a centrifugal impeller. International journal of heat and mass transfer, 2010. 53(4): p. 797–810. [Google Scholar]
  4. Davin, T., et al., Experimental study of oil cooling systems for electric motors. Applied Thermal Engineering, 2015. 75: p. 1–13. [Google Scholar]
  5. Chaudhry, H.N., B.R. Hughes, and S.A. Ghani, A review of heat pipe systems for heat recovery and renewable energy applications. Renewable and Sustainable Energy Reviews, 2012. 16(4): p. 2249–2259. [CrossRef] [Google Scholar]
  6. Putra, N. and F.N. Iskandar, Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment. Experimental Thermal and Fluid Science, 2011. 35(7): p. 1274–1281. [CrossRef] [Google Scholar]
  7. Putra, N. and W.N. Septiadi, Improvement of heat pipe performance through integration of a coral biomaterial wick structure into the heat pipe of a CPU cooling system. Heat and Mass Transfer, 2017. 53(4): p. 1163–1174. [CrossRef] [Google Scholar]
  8. Putra, N., et al. Application of Al2O3 nanofluid on sintered copper-powder vapor chamber for electronic cooling. in Advanced Materials Research. 2013. Trans Tech Publ. [PubMed] [Google Scholar]
  9. Weng, Y.-C., et al., Heat pipe with PCM for electronic cooling. Applied Energy, 2011. 88(5): p. 1825–1833. [Google Scholar]
  10. Wang, J.-C., L-type heat pipes application in electronic cooling system. International Journal of Thermal Sciences, 2011. 50(1): p. 97–105. [CrossRef] [Google Scholar]
  11. Putra, N., B. Ariantara, and R.A. Pamungkas, Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Applied Thermal Engineering, 2016. 99: p. 784–789. [Google Scholar]
  12. Putra, N. and B. Ariantara, Electric motor thermal management system using L-shaped flat heat pipes. Applied Thermal Engineering, 2017. 126: p. 1156–1163. [Google Scholar]
  13. Akachi, H., Structure of a heat pipe. 1990, Google Patents. [Google Scholar]
  14. Groll, M. and S. Khandekar. Pulsating heat pipes: progress and prospects. in Proceedings of the International Conference on Energy and the Environment, China. 2003. [Google Scholar]
  15. Khandekar, S., et al. Closed and open loop pulsating heat pipes. in K-4, Proceedings of 13th International Heat Pipe Conference, China Academy of Space Technology, Shanghai, China. 2004. [Google Scholar]
  16. Khandekar, S., M. Schneider, and M. Groll, Mathematical modeling of pulsating heat pipes: state of the art and future challenges. Heat and Mass Transfer, SK Saha, SP Venkateshen, BVSSS Prasad, and SS Sadhal, eds., Tata McGraw-Hill Publishing Company, New Delhi, India, 2002: p. 856–862. [Google Scholar]
  17. Shang, F., et al., Experimental investigation of enhanced heat transfer of self-exciting mode oscillating-flow heat pipe with non-uniform profile under laser heating. WIT Transaction on Engineering Sciences: Advanced Computational Methods In Heat Transfer IX, Southampton, UK, 2006: p. 241–248. [Google Scholar]
  18. Akachi, H., Pulsating heat pipes. Proc. 5th IHPS, Nov.(1996), 1996: p. 208–217. [Google Scholar]
  19. Borgmeyer, B., et al., Heat transport capability and fluid flow neutron radiography of three-dimensional oscillating heat pipes. Journal of Heat Transfer, 2010. 132(6): p. 061502. [Google Scholar]
  20. Ma, H., et al., Effect of nanofluid on the heat transport capability in an oscillating heat pipe. Applied Physics Letters, 2006. 88(14): p. 143116. [Google Scholar]
  21. Khandekar, S., et al., Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes. Microscale thermophysical engineering, 2002. 6(4): p. 303–317. [CrossRef] [Google Scholar]
  22. Riehl, R.R., Characteristics of an open loop pulsating heat pipe. 2004, SAE Technical Paper. [Google Scholar]
  23. Zhang, Y. and A. Faghri, Advances and unsolved issues in pulsating heat pipes. Heat Transfer Engineering, 2008. 29(1): p. 20–44. [CrossRef] [Google Scholar]
  24. Rittidech, S., N. Pipatpaiboon, and P. Terdtoon, Heat-transfer characteristics of a closed-loop oscillating heat-pipe with check valves. Applied energy, 2007. 84(5): p. 565–577. [Google Scholar]
  25. Shafii, M.B., A. Faghri, and Y. Zhang, Thermal modeling of unlooped and looped pulsating heat pipes. Journal of heat transfer, 2001. 123(6): p. 1159–1172. [Google Scholar]
  26. Vassilev, M., et al. Experimental study of a pulsating heat pipe with combined circular and square section channels. in Industry Applications Conference, 2007. 42nd IAS Annual Meeting. Conference Record of the 2007 IEEE. 2007. IEEE. [Google Scholar]
  27. Bergman, T.L., et al., Fundamentals of heat and mass transfer. 2011: John Wiley & Sons. [Google Scholar]
  28. Xue, Z. and W. Qu, Experimental study on effect of Inclination angles to Ammonia pulsating heat pipe. Chinese Journal of Aeronautics, 2014. 27(5): p. 1122–1127. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.