Open Access
E3S Web Conf.
Volume 113, 2019
SUPEHR19 SUstainable PolyEnergy generation and HaRvesting Volume 1
Article Number 03020
Number of page(s) 8
Section Energy Micropolygeneration and Harvesting
Published online 21 August 2019
  1. R. El Chammas, and D. Clodic, “Combined Cycle for Hybrid Vehicles, ” SAE Technical Paper 2005-01-1171; (2005). doi:10.4271/2005-01-1171. [Google Scholar]
  2. F. Zhou, E. Dede, and S. Joshi, “Application of Rankine Cycle to Passenger Vehicle Waste Heat Recovery A Review, ” SAE Int. J. Mater. Manf. 9(2); (2016). doi:10.4271/2016-01-0178. [Google Scholar]
  3. S.S. Rathore, A. Singh, P. Kumar, N. Alam, et al., “Review of Exhaust Gas Heat Recovery Mechanism for Internal Combustion Engine Using Thermoelectric Principle, ” SAE Technical Paper 2018-01-1363; (2018). doi:10.4271/2018-01-1363. [Google Scholar]
  4. J. Fairbanks “Thermoelectric applications in vehicles” status 2008. In: 6th European conference of thermoelectrics, Paris, France; (2008). [Google Scholar]
  5. T. Wang, Y. Zhang, Z. Peng, G. Shu. “A review of researches on thermal exhaust heat recovery with Rankine cycle.” Renew Sustain Energy Rev 15: 2862–71; (2011). [CrossRef] [Google Scholar]
  6. C. Sprouse, c. Depcik “Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery.” Appl Therm Eng 51:711–22; (2013). [Google Scholar]
  7. M. Tahani, M. Javan, M. Biglari “A comprehensive study on waste heat recovery from internal combustion engines using organic Rankine cycle.” Therm Sci 17(2):611–24; (2013). [CrossRef] [Google Scholar]
  8. Cooper, A., Bassett, M., Hall, J., Harrington, A. et al., “HyPACE Hybrid Petrol Advance Combustion Engine Advanced Boosting System for Extended Stoichiometric Operation and Improved Dynamic Response, ” SAE Technical Paper 2019-01-0325; (2019). doi:10.4271/2019-01-0325 [Google Scholar]
  9. A. Bin Mamat, R. Martinez-Botas, S. Rajoo, A. Romagnoli, “Waste heat recovery using a novel high performance low pressure turbine for electric turbocompounding in downsized gasoline engines: experimental and computational analysis”, Energy 90 218–234; (2015). [CrossRef] [Google Scholar]
  10. G. Pasini, G. Lutzemberger, S. Frigo, S. Marelli, M. Ceraolo, R. Gentili, M. Capobianco, “Evaluation of an electric turbo compound system for SI engines: A numerical approach.” Applied Energy 162 527–540; (2016). [Google Scholar]
  11. A. Bin Mamat, A. Romagnoli, R. Martinez-Botas, “Characterisation of a low pressure turbine for turbocompounding applications in a heavily downsized mild-hybrid gasoline engine”, Energy 64 3–16; (2014). [CrossRef] [Google Scholar]
  12. G. Pasini, S. Frigo, S. Marelli, “Numerical comparison of an electric turbo compound applied to a SI and a CI engine”, in: ASME 2015 Internal Combustion Engine Division Fall Technical Conference, November 8–11, Texas, USA; (2015). [Google Scholar]
  13. Tesla, N., 1913, “Turbine”, US Patent 1061206. [Google Scholar]
  14. Tesla, N., 1913, “Fluid propulsion”, US Patent 1061142. [Google Scholar]
  15. Renuke, A., Vannoni, A., Traverso, A., and Pascenti, M., 2019, “Experimental Investigation of Tesla Micro Expanders”, Proceedings: ASME TurboExpo’19, Phoenix, USA [Google Scholar]
  16. S. Marelli, G. Marmorato, M. Capobianco, “Evaluation of heat transfer effects in small turbochargers by theoretical model and its experimental validation”, in: Energy, Elsevier, Volume 112, Pages 264–272, doi:10.1016/; (2016). [CrossRef] [Google Scholar]
  17. M. Capobianco, S. Marelli “Experimental investigation into the pulsating flow performance of a turbocharger turbine in the closed and open waste-gate region.” In: Proceedings of 9th international conference on turbochargers and turbocharging; p. 373–86; (2010). [Google Scholar]
  18. S. Marelli, A. Misley, A. Taylor, P. Silvestri, M. Capobianco, M. Canova, “Experimental Investigation on Surge Phenomena in an Automotive Turbocharger Compressor”, SAE Technical Paper 2018-01-0976; (2018). doi: 10.4271/2018-01-0976 [Google Scholar]
  19. V. De Bellis, S. Marelli, F. Bozza, M. Capobianco, “Advanced Numerical/Experimental Methods for the Analysis of a Waste-Gated Turbocharger Turbine, ” SAE Int. J. Engines 7(1); (2014). doi:10.4271/2014-01-1079. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.