Open Access
Issue
E3S Web Conf.
Volume 123, 2019
Ukrainian School of Mining Engineering - 2019
Article Number 01047
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/201912301047
Published online 22 October 2019
  1. Dolgikh, O.V., & Dolgikh, L.V. (2011). Investigation into the sinkhole area caused by mining operations of Ordzhonikidze underground mine. Visnyk Kryvorizkoho tekhnichnoho universytetu, (27), 70-73. [Google Scholar]
  2. Dolgikh, A.V. (2014). Application of neural networks to investigations into the earth surface mined by underground operations. Geomatica, (1), 92-96. [Google Scholar]
  3. Dolgikh, O.V. (2018). Use of capabilities of modern devices in investigating into slides on territories of mining enterprises. Sbornik nauchnykh trudov “Kachestvo mineralnogo syria”, 323-331. [Google Scholar]
  4. Novakovskiy, B.A., & Permiakov, R. V. (2014). Digital ground stereophotography: capabilities and prospects. Geodesy and Cartography, (10), 37-41. [Google Scholar]
  5. Pysmennyi, S., Brоvkо, D., Shwager,N., Kasatkina, I., Paraniuk, D., & Serdiuk, О. (2018). Develоpment оf cоmplexstructure оre depоsits by means оf chamber systems under cоnditiоns оf the Kryvyi Rih irоn оre field. Eastern-Eurоpean Jоurnal оf Enterprise Technоlоgies, 5(1(95)), 33-45. https://dоi.оrg/10.15587/1729-4061.2018.142483 [CrossRef] [Google Scholar]
  6. Stupnik, M., Kalinichenko, O., Kalinichenko, V., Pysmennyi, S., & Morhun, O. (2018). Choice and substantiation of stable crown shapes in deep-level iron ore mining. Mining of Mineral Deposits, 12(4), 56-62. https://doi.org/10.15407/mining12.04.056 [CrossRef] [Google Scholar]
  7. Stupnik, M. I., Kalinichenkо, V.O., Fedko, M.B., & Kalinichenko, О.V. (2018). Investigation into crown stability at underground leaching of uranium ore. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 20-25. https://doi.org/10.29202/nvngu/2018-6/5 [CrossRef] [Google Scholar]
  8. Khomenko, O. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 44-54. [Google Scholar]
  9. Stupnіk, M.І., Kalіnіchenko, V.O., Kalіnіchenko, O.V., Muzika, І.O., Fed’ko, M.B., & Pismennyi, S.V. (2015). The research of strain-stress state of magnetite quartzite deposit massif in the condition of mine “Gigant-Gliboka” of central iron ore enrichment works (CGOK). Metallurgical and mining industry, (7), 377-383. [Google Scholar]
  10. Stupnik, M.I.., Kalinichenko, V.O., Pysmennyi, S.V., & Kalinichenko, O.V. (2018). Determining the qualitative composition of the equivalent material for simulation of Kryvyi Rih iron ore basin rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 21-27. https://doi.org/10.29202/nvngu/2018-4/4 [CrossRef] [Google Scholar]
  11. Andreev, B.M., Brovko, D.V., & Khvorost, V.V. (2015). Determination of reliability and justification of object parameters on the surface of mines taking into account change-over to the lighter enclosing structures. Metallurgical and mining industry, (12), 378-382. [Google Scholar]
  12. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchuk, Z. (2018). Analytical Research of the Stress-Deformed State in the Rock Massif around Faulting. International Journal of Engineering Research in Africa, (35), 77-88. https://doi.org/10.4028/www.scientific.net/jera.35.77 [CrossRef] [Google Scholar]
  13. Khomenko, O., Kononenko, M., & Petlyovanyy, M. (2014). Investigation of stress-strain state of rock massif around the secondary chambers. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 241-245. https://doi.org/10.1201/b17547-43 [CrossRef] [Google Scholar]
  14. Kalinichenko V., Pysmennyi S., Shvaher N., Kalinichenko O. (2018). Selective underground mining of complex structured ore bodies of Kryvyi Rih Iron Ore Basin. E3S Web of Conferences, (60), 00041. https://doi.org/10.1051/e3sconf/20186000041 [CrossRef] [EDP Sciences] [Google Scholar]
  15. Vladyko, O., Kononenko, M., & Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 147-150. https://doi.org/10.1201/b13157-26 [CrossRef] [Google Scholar]
  16. Khomenko, O., & Maltsev, D. (2013). Laboratory research of influence of face area dimensions on the state of uranium ore layers being broken. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 31-37. [Google Scholar]
  17. Stupnik, M., Kolosov, V., Kalinichenko, V., & Pismennyi, S. (2014). Physical modeling of waste inclusions stability during mining of complex structured deposits. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 25-30. https://doi.org/10.1201/b17547-6 [CrossRef] [Google Scholar]
  18. Stupnik, N., Kalinichenko, V., Kolosov, V., Pismennyi, S. & Shepel A. (2014). Modeling of stopes in soft ores during ore mining. Metallurgical and mining industry, (3), 32-36. [Google Scholar]
  19. Dryzhenko, A., Moldabayev, S., Shustov, A., Adamchuk, A., & Sarybayev, N. (2017). Open pit mining technology of steeply dipping mineral occurences by steeply inclined sublayers. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(13), 599-606. https://doi.org/10.5593/sgem2017/13/s03.076 [Google Scholar]
  20. Malanchuk, Y., Mоshynskyi, V., Kоrniienkо, V., & Malanchuk, Z. (2018). Mоdeling the prоcess оf hydrоmechanical amber extractiоn. E3S Web оf Cоnferences, (60), 00005. [CrossRef] [EDP Sciences] [Google Scholar]
  21. Malanchuk, Z.R. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6). Article in press. [Google Scholar]
  22. Cherniaiev, O.V. (2017). Systematization of the hard rock non-metallic mineral deposits for improvement of their mining technologies. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 11-17. [Google Scholar]
  23. Malanchuk, Ye., Korniienko, V., Moshynskyi, V., Soroka, V., Khrystyuk, A., & Malanchuk, Z. (2019). Regularities of hydromechanical amber extraction from sandy deposits. Mining of Mineral Deposits, 13(1), 49-57. https://doi.org/10.33271/mining13.01.049 [CrossRef] [Google Scholar]
  24. Malanchuk, Z., Mоshynskyi, V., Malanchuk, Y., & Kоrniienkо, V. (2018). Physicо-Mechanical and Chemical Characteristics оf Amber. Sоlid State Phenоmena, (277), 80-89. [CrossRef] [Google Scholar]
  25. Carvajal, F., Agüera F., & Pérez M. (2011). Surveying a landslide in a road embankment using unmanned aerial vehicle. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/C22, 201-206. [Google Scholar]
  26. Peterman, V. (2015). Landslide activity monitoring with help of unmanned aerial. The international archives of the photogrammetry, remote sensing and spatial information sciences, XL-1/W4, 215-218. [CrossRef] [Google Scholar]
  27. Beregovoi, D. (2015). Potential analysis of image based methods for deformation monitoring, with special regard on the comparison of different image processing software. Leoben: Montanuniversität Leoben department of mineral resources engineering. [Google Scholar]
  28. Rysbekov, K., Huayang, D., Kalybekov, T., Sandybekov, M., Idrissov, K., Zhakypbek, Y., Bakhmagambetova, G. (2019). Application features of the surface laser scanning technology when solving the main tasks of surveying support for reclamation. Mining of Mineral Deposits, 13(3), 40-48. https://doi.org/10.33271/mining13.03.040 [CrossRef] [Google Scholar]
  29. Instruction on surveillance of walls, slopes of benches and dumps at open-pits and development of measures to ensure their stability. (1971). Leningrad: Vsesoyuznyy nauchno-issledovatel’skiy marksheyderskiy institut. [Google Scholar]
  30. Methodology instructions on surveillance of deformations of walls of and dumps, interpretation of the results and forecasts. (1987). Leningrad: Vsesoyuznyy nauchno-issledovatel’skiy marksheyderskiy institut. [Google Scholar]
  31. Slepchenko, A.L. (2007). Practical accuracy of DTM, constructed from air laser scanning data. Geoprofi, (3), 14-16. [Google Scholar]
  32. Slepchenko, A.L. (2008). Features of compiling topographic maps and plans based on air laser scanning data. Geoprofi, (3), 20-23. [Google Scholar]
  33. Kuttykadamov, M.E., Rysbekov, K.B., Milev, I., Ystykul, K.A., & Bektur, B.K. (2016). Geodetic monitoring methods of high-rise constructions deformations with modern technologies application. Journal of Theoretical and Applied Information Technology, 93(1), 24-31. [Google Scholar]
  34. Essin A.S., & Essin, S.S. (2010). The feature of photogrammetrical processing of digital airborne materials using pilotless vehicles. Interekspo GEO-Sibir’, 1(4), 80-82. [Google Scholar]
  35. Essin A.S., & Essin, S.S. (2009). Technology op fotogrammetrical processing of aerofotoimages, got with UFM, in purpose of the creation ortofototoplans. Interekspo GEO-Sibir’, 4(1), 72-75. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.