Open Access
Issue
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
Article Number 01013
Number of page(s) 5
Section Heat and Mass Transfer in Energy Systems
DOI https://doi.org/10.1051/e3sconf/201912801013
Published online 08 November 2019
  1. D.G. Ebling, A. Krumm, B. Pfeiffelmann, J. Gottschald, J. Bruchmann, A.C. Benim, M. Adam, R. Labs, R.R. Herbertz, A. Stunz, “Development of a system for thermoelectric heat recovery from stationary industrial processes”, Journal of Electronic Materials, 45(7), pp.3433–3439 (2016) [CrossRef] [Google Scholar]
  2. M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, Th. Kolb, “Renewable power-to-gas: a technological and economic review”, Renewable Energy, 85, pp.1371–1390 (2016) [Google Scholar]
  3. A.C. Benim, B. Epple, B. Krohmer, “Modelling of pulverised coal combustion by a Eulerian-Eulerian two-phase flow formulation”, Progress in Computational Fluid Dynamics - An International Journal, 5(6), pp.345–361 (2005) [CrossRef] [Google Scholar]
  4. S. De, A.K. Agarwal, VS. Moholkar, B. Thallada (Eds.), Coal and Biomass Gasification, (Springer, Berlin, Germany, 2018) [CrossRef] [Google Scholar]
  5. IAEA, “Hydrogen Production Using Nuclear” Energy, IAEA Nuclear Energy Series No. NP-T-4.2, Internat . Atomic Energy Agency, Vienna (2013) [Google Scholar]
  6. A.C. Benim, K.J. Syed, Flashback Mechanisms in Lean Premixed Gas Turbine Combustion, (Academic Press, Cambridge, MA, USA, 2014) [Google Scholar]
  7. S.Y. Yang, S.H. Chung, H.J. Kim, “Effect of pressure on quenching meshes in transmitting hydrogen in combustion”, Nuclear Engineering and Design, 224, pp.199–206 (2003) [CrossRef] [Google Scholar]
  8. S.W. Hong, J.H. Song, “Flame-quenching model of the quenching mesh for H2-Air mixtures”, Journal of Nuclear Science and Technology, 50, pp.1213–1219 (2013) [Google Scholar]
  9. Z.B. Song, L.J. Wei, Z.Z. Wu, “Effects of heat losses on flame shape and quenching of premixed flames in narrow-channels”, Combustion Science and Technology, 180, pp.264–278 (2008) [CrossRef] [Google Scholar]
  10. B. Lewis, G. von Elbe, Combustion, Flames and Explosions of Gases, 3rd ed., (Academic Press, Orlando, USA 1987) [Google Scholar]
  11. H. Philips, “On the transmission of an explosion through a gap smaller than the quenching distance”, Proceedings Royal Society, 7, pp.129–135 (1963) [Google Scholar]
  12. Biennial report on hydrogen safety (version 1.2), European NoE HySafe, http://www.hysafe.org/BRHS (2007) [Google Scholar]
  13. M.A. Green, “Hydrogen safety issues compared to safety issues with methane and propane”, AIP Conference Proceedings, 823, pp.823–319 (2006) [Google Scholar]
  14. H. Xiao, Q. Wang, X. He, J. Sun, L. Yao, “Experimental and numerical study on premixed hydrogen/air flame propagation in a horizontal rectangular closed duct”, International Journal of Hydrogen Energy, 35, pp.1367–1376 (2010). [Google Scholar]
  15. H. Xiao, D. Makarov, J. Sun, V. Molkov, “Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct”, Combustion and Flame, 159, pp.1523–1538 (2012) [Google Scholar]
  16. H. Xiao, Q. Wang, X. Shen, W. An, Q. Duan, J. Sun, “An experimental study of premixed hydrogen/air flame propagation in a partially open duct”, International Journal of Hydrogen Energy, 39, pp.6233–6241 (2014) [Google Scholar]
  17. M. Yu, X. Yang, K. Zheng, L. Zheng, W. Wen, “Experimental study of premixed syngas/air flame deflagration in a closed duct”, International Journal of Hydrogen Energy, 43, pp.13676–13686 (2018) [Google Scholar]
  18. X. Yang, M. Yu, Z. Zheng, S. Wan, L. Wang, “An experimental investigation into the behavior of premixed flames of hydrogen/carbon monoxide/air mixtures in a half-open duct”, Fuel, 237, pp.619–629 (2019) [CrossRef] [Google Scholar]
  19. ANSYS® FLUENT, http://www.ansys.com [Google Scholar]
  20. S.R. Turns, An Introduction to Combustion, 3rd ed., (McGrawHill, New York, USA, 2012) [Google Scholar]
  21. R.B. Bird, W.E. Stewart, E. N. Lightfoot, Transport Phenomena, 2nd ed., (Wiley, NY, 2002) [Google Scholar]
  22. A.C. Benim, “A finite element solution of radiative heat transfer in participating media utilizing the moment method”, Computer Methods in Applied Mechanics and Engineering, 67(1), pp.1–14 (1988) [Google Scholar]
  23. R.J. Kee, F.M. Rupley, J.A. Miller, “The Chemkin thermodynamic data base”, Sandia Report, SAND87-8215B (1991) [Google Scholar]
  24. R.A. Shevla, “Estimated viscosities and thermal conductivities of gases at high temperatures”, NASA Technical Report R-132 (1962) [Google Scholar]
  25. R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 4th ed., (McGraw- Hill, New York, USA, 1987) [Google Scholar]
  26. P. Sagaut, Large Eddy Simulation for Incompressible Flows, 3rd Ed., (Springer, Berlin, 2006) [Google Scholar]
  27. A.C. Benim, M.P. Escudier, A. Nahavandi, A.K. Nickson, K.J. Syed, F. Joos, “Experimental and numerical investigation of isothermal flow in an idealized swirl combustor”, International Journal of Numerical Methods for Heat & Fluid Flow, 20(3), pp.348–370 (2010) [CrossRef] [Google Scholar]
  28. A.C. Benim, S. Iqbal. W. Meier, F. Joos, A. Wiedermann, “Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor”, Applied Thermal Engineering, 110, pp.202–212 (2017) [Google Scholar]
  29. P. A. Durbin. B.A. Pettersson Reif, Statistical Theory and Modeling for Turbulent Flows, 2nd Ed (Wiley, Chichester, 2011) [Google Scholar]
  30. T.H. Shih, W.W. Liou, A. Shabbir. Z. Yang, J. Zhu, “A new k-ɛ; eddy-viscosity model for high Reynolds number turbulent flows - Model development and validation”, Computers and Fluids, 24(3), pp.227–238 (1995) [Google Scholar]
  31. M.O. Conaire, H.J. Curran, J.M. Simmie, W.J. Pitz, C. K. Westbrook, “A comprehensive modeling study of hydrogen oxidation”, International Journal of Chemical Kinetics, 36, pp.603–622 (2004) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.