Open Access
Issue
E3S Web Conf.
Volume 138, 2019
International Scientific Conference “Construction and Architecture: Theory and Practice for the Innovation Development” (CATPID-2019)
Article Number 01019
Number of page(s) 6
Section Energy and Environmental Engineering
DOI https://doi.org/10.1051/e3sconf/201913801019
Published online 16 December 2019
  1. F. Wang, I.C. Ward, The development of a radon entry model for a house with a cellar , Building and Environment, 35, 615-631 (2000). [Google Scholar]
  2. A.V. Vasilyev, I.V. Yarmoshenko, M.V. Zhukovsky, Low air exchange rate causes high indoor radon concentration in energy-efficient buildings, Radiation Protection Dosimetry, 164-4, 601-605 (2015). [Google Scholar]
  3. N.V. Bakaeva, A.V. Kalaydo, Analytical model for calculation the radon-protective characteristics of underground walling, IOP Conference Series: Materials Science and Engineering, 456, 012102 (2018). DOI: 10.1088/1757-899X/456/1/012102. [CrossRef] [Google Scholar]
  4. L.A. Gulabiants, M.I. Livshits, S.V. Medvedev, Determination of radon load on underground walling of a building, Academy, 1, 122-128 (2016). [Google Scholar]
  5. L.A. Gulabiants, Radon hazard. Terms, criteria, signs, ANRI, 1, 12-14 (2013). [Google Scholar]
  6. P.S. Miklyaev, T.B. Petrova, Mechanisms of formation of radon flux from the soil surface and approaches to assessing the radon hazard of residential areas, ANRI, 2, 2-16 (2007). [Google Scholar]
  7. L.I. Khorzova, P.A. Sidyakin, E.G. Yanukyan, Radiation situation at construction sector objects in Caucasus Mineral Waters region and prospects of its decrease, Procedia Engineering 2: Second International Conference on Industrial Engineering, ICIE 2016, 2031-2035 (2016). [Google Scholar]
  8. B.P. Jelle, Development of a model for radon concentration in indoor air, Science of the Total Environment, 416, 343-350 (2012). [CrossRef] [Google Scholar]
  9. A.G. Scott, Modeling radon sources and ingress, The 1993 International Radon Conference IV, 66-74 (1993). [Google Scholar]
  10. H. Kojima, K. Nagano, Dependence of barometric pressure, wind velocity and temperature on the variation of radon exhalation, Proceedings of the 2000 International Radon Symposium, NJ III 6.1-6.11, (2000). [Google Scholar]
  11. K.K. Al-Ahmady, D.E. Hintenlang, Assessment of temperature-driven pressure differences with regard to radon entry and indoor radon concentration, Proceedings of the 1994 International Symposium on Radon and Radon Reduction Technology. Atlantic City, NJ III 6.1-6.11, (1994). [Google Scholar]
  12. T. Kohl, F. Medici, L. Rybach, Numerical simulation of radon transport from subsurface to buildings, J. of Appl. Geophysics, 31, 145-152 (1994). [CrossRef] [Google Scholar]
  13. L.A. Gulabiants, Manual on the design of antiradon protection of residential and public buildings (NO «FAN-NAUKA», Moscow, 2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.