Open Access
E3S Web Conf.
Volume 146, 2020
The 2019 International Symposium of the Society of Core Analysts (SCA 2019)
Article Number 03005
Number of page(s) 9
Section Improved SCAL Techniques and Interpretation
Published online 05 February 2020
  1. E.J. Peters, Advanced Petrophysics: Geology, Porosity, Absolute Permeability, Heterogeneity and Geostatistics, 1, Live Oak Book Company (2012) [Google Scholar]
  2. M. Miller, B. Lieber, G. Piekenbrock and T. McGinness, “Low Permeability Gas Reservoirs How Low Can You Go?” SPWLA Middle East Regional Symposium (2007) [Google Scholar]
  3. K.W. Shanley, R.M. Cluff and J.W. Robinson, “Factors controlling prolific gas production from lowpermeability sandstone reservoirs: Implications for resource assessment, prospect development, and risk analysis,” AAPG bulletin, 88, 1083-1121 (2004) [Google Scholar]
  4. A. Amann-Hildenbrand, J.P. Dietrichs and B.M. Krooss, “Effective gas permeability of Tight Gas Sandstones as a function of capillary pressure–a non‐steady‐state approach,” Geofluids, 16, 367-383 (2016) [Google Scholar]
  5. W.R. Purcell, “Capillary Pressures - Their Measurement Using Mercury and the Calculation of Permeability Therefrom,” Trans., AIME 186, 39-48 (1949) [Google Scholar]
  6. J.S. Osoba, J.G. Richardson, J.K. Kerver, J.A. Hafford and P.M. Blair, “Laboratory Measurements of Relative Permeability,” Trans., AIME 192, 47-56 (1951) [Google Scholar]
  7. M.M. Honarpour, F.Koederitz and A. Herbert, Relative permeability of petroleum reservoirs, CRC Press Inc, Boca Raton, FL (1986) [Google Scholar]
  8. C.L. Vavra, J.G. Kaldi and R.M. Sneider, “Geological applications of capillary pressure: a review (1),” AAPG Bulletin, 76, 840-850 (1992) [Google Scholar]
  9. D. Tiab and E.C. Donaldson, Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, 4th ed., Waltham (USA): Gulf Professional Publishing (2015) [Google Scholar]
  10. R.K. Estes and P.F. Fulton, “Gas slippage in permeability measurements,” J. Pet. Tech, 8, 69-73 (1956) [CrossRef] [Google Scholar]
  11. J.A. Rushing, K.E. Newsham and V.a.K.C. Fraassen, “Measurement of the Two-Phase Gas Slippage Phenomenon and its Effect on Effective Gas Permeability in Tight Gas Sands,” SPE Annual Technical Conference and Exhibition (2003) 12 A. Amann-Hildenbrand, M. Shabani, T. Hiller, N. Klitzsch, N. Schleifer and B.M. Krooss, “ Gas Slippage in Partially Saturated Tight Rocks and During Drainage,” SCA2019, #79 (2019) [Google Scholar]
  12. H.P.G. Darcy, Les Fontaines publiques de la ville de Dijon, Victor Dalamont (1856) 14 A. Kundt, E. Warburg, “Über Reibung und Wärmeleitung verdünnter Gase,” Annalen der Physik, 232, 177-211 (1875) [Google Scholar]
  13. M. Knudsen, “Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren,” Annalen der Physik, 333, 75-130 (1909) [Google Scholar]
  14. L.J. Klinkenberg, “The permeability of porous media to liquids and gases,” Drilling and production practice (1941) [Google Scholar]
  15. L. Qingjie, L. Baohua, L. Xianbing, Y. Shouguo, “The effect of water saturation on gas slip factor by pore scale network modeling,” SCA 2002 Symposium (2002) [Google Scholar]
  16. E.W. Washburn, “The dynamics of capillary flow,” Phys. Rev., 17(3),. 273-283 (1921) [Google Scholar]
  17. G.R. Coates, L. Xiao, M.G. Prammer, NMR logging: principles and applications (1999) [Google Scholar]
  18. A.A. Behroozmand, K. Keating and E. Auken, “A review of the principles and applications of the NMR technique for near-surface characterization,” Surveys in Geophysics, 36, 27-85 (2015) [Google Scholar]
  19. K.J. Dunn, D.J. Bergman and G.A. LaTorraca, Nuclear magnetic resonance: petrophysical and logging applications (2002) [Google Scholar]
  20. K. Keating and R. Knight, “A laboratory study of the effect of magnetite on NMR relaxation rates,” J. Appl. Geophys., 66, 188-196 (2008) [Google Scholar]
  21. K. Keating and R. Knight, “A laboratory study of the effect of Fe (II)-bearing minerals on nuclear magnetic resonance (NMR) relaxation measurements,” Geophysics, 75, F71-F82 (2010) [Google Scholar]
  22. J. Mitchell, T.C. Chandrasekera, M.L. Johns, L.F. Gladden and E.J. Fordham, “Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: The effect of magnetic field strength,” Phys. Rev. E, 81(2), 026101 (2010) [Google Scholar]
  23. K.R. Brownstein and C.E. Tarr, “Importance of classical diffusion in NMR studies of water in biological cells,” Phys. Rev. A, 19(6), 2446-2453 (1979) [CrossRef] [Google Scholar]
  24. W.E. Kenyon, “Petrophysical principles of applications of NMR logging,” The Log Analyst, 38(2), 21-43 (1997) [Google Scholar]
  25. J. Hadamard, Lectures on Cauchy’s problem in linear partial differential equations, Yale University Press, New York (1923) [Google Scholar]
  26. R.C. Aster, B. Borchers, C.H. Thurber, Parameter Estimation and Inverse Problems, 2nd ed. (2013) [Google Scholar]
  27. P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, SIAM Philadelphia, (1998) [CrossRef] [Google Scholar]
  28. K. Halbach, “Design of permanent multipole magnets with oriented rare earth cobalt material,” Nucl. Instrum. Methods, 169, 1-10 (1980) [Google Scholar]
  29. S. Anferova, V. Anferov, J. Arnold, E. Talnishnikh, M.A. Voda, K. Kupferschläger, P. Blümler, C. Clauser and B. Blümich, “Improved Halbach sensor for NMR scanning of drill cores,” Mag. Res. Imag., 25, 474-480 (2007) [CrossRef] [Google Scholar]
  30. H.Y. Carr and E.M. Purcell, Phys. Rev., 94(3), 630-638 (1954) [CrossRef] [Google Scholar]
  31. S. Meiboom and D. Gill, “Effects of diffusion on free precession in nuclear magnetic resonance experiments,” Rev Sci. Instrum., 29(8), 688-691 (1958) [CrossRef] [Google Scholar]
  32. P. Egermann, J.M. Lombard and P. Bretonnier, “A fast and accurate method to measure threshold capillary pressure of caprocks under representative conditions,” International Symposium of the Society of Core Analysts (2006) [Google Scholar]
  33. O. Mohnke, R. Jorand, C. Nordlund and N. Klitzsch, “Understanding NMR relaxometry of partially watersaturated rocks,” Hydrol. Earth Syst. Sci., 19, 2763-2773 (2015) [Google Scholar]
  34. K. Aziz and A. Settari, Petroleum reservoir simulation (1979) [Google Scholar]
  35. E.F. Johnson, D.P. Bossler and V.O. Naumann, “Calculation of relative permeability from displacement experiments,” Pet. Trans., AIME, 216, 370-372 (1959) [Google Scholar]
  36. S.C. Jones and W.O. Roszelle, “Graphical techniques for Determining Relative Permeability from Displacement Experiments,” J. Pet. Tech., 30, 807-817 (1978) [CrossRef] [Google Scholar]
  37. R. Lenormand and G. Lenormand, Cydar© User Manual, Cydarex© Company Brochure (2016) [Google Scholar]
  38. A.T. Corey, “The interrelation between gas and oil relative permeabilities,” Producers monthly, 19, 38-41 (1954) [Google Scholar]
  39. R.G. Bentsen and J. Anli, “Using parameter estimation techniques to convert centrifuge data into a capillarypressure curve,” Soc. Pet. Eng. J., 17, 57-64 (1977) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.