Open Access
E3S Web Conf.
Volume 146, 2020
The 2019 International Symposium of the Society of Core Analysts (SCA 2019)
Article Number 04001
Number of page(s) 7
Section Pore Scale Imaging and Modeling
Published online 05 February 2020
  1. G. Bruno, A. Efremov, B. Wheaton, I. Bobrikov, V.G. Simkin, and S. Misture, “Micro-and macroscopic thermal expansion of stabilized aluminum titanate,” J. Eur. Ceram. Soc., 2010. [Google Scholar]
  2. G. Bruno et al., “On the stress-free lattice expansion of porous cordierite,” Acta Mater., 2010. [Google Scholar]
  3. P.R. Shearing, L.E. Howard, P.S. Jørgensen, N.P. Brandon, and S.J. Harris, “Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery,” Electrochem. commun., 2010. [Google Scholar]
  4. D. Kehrwald, P.R. Shearing, N.P. Brandon, P.K. Sinha, and S.J. Harris, “Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode,” J. Electrochem. Soc., 2011. [Google Scholar]
  5. R. Dann, M. Turner, M. Close, and M. Knackstedt, “Multi-scale characterisation of coastal sand aquifer media for contaminant transport using X-ray computed tomography,” Environ. Earth Sci., 2011. [Google Scholar]
  6. H.P. Menke, M.G. Andrew, M.J. Blunt, and B. Bijeljic, “Reservoir condition imaging of reactive transport in heterogeneous carbonates using fast synchrotron tomography - Effect of initial pore structure and flow conditions,” Chem. Geol., vol. 428, pp. 15–26, 2016. [CrossRef] [Google Scholar]
  7. M. Andrew, B. Bijeljic, and M.J. Blunt, “Poreby-pore capillary pressure measurements using X-ray microtomography at reservoir conditions: Curvature, snap-off, and remobilization of residual CO2,” Water Resour. Res., vol. 50, no. 11, pp. 8760–8774, 2014. [CrossRef] [Google Scholar]
  8. S. Iglauer, S. Favretto, G. Spinelli, G. Schena, and M.J. Blunt, “X-ray tomography measurements of power-law cluster size distributions for the nonwetting phase in sandstones,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 82, pp. 10–12, 2010. [CrossRef] [Google Scholar]
  9. M.J. Blunt et al., “Pore-scale imaging and modelling,” Adv. Water Resour., vol. 51, pp. 197–216, 2013. [CrossRef] [Google Scholar]
  10. a.V. Ryazanov, K.S. Sorbie, and M.I.J. van Dijke, “Structure of residual oil as a function of wettability using pore-network modelling,” Adv. Water Resour., vol. 63, pp. 11–21, 2014. [Google Scholar]
  11. J. Schmatz, J.L. Urai, S. Berg, and H. Ott, “Nano-scale imaging of pore-scale fluid-fluidsolid contacts in sandstone,” Geophys. Res. Lett., p. n/a-n/a, 2015. [Google Scholar]
  12. D. Silin, L. Tomutsa, S.M. Benson, and T.W. Patzek, “Microtomography and Pore-Scale Modeling of Two-Phase Fluid Distribution,” Transp. Porous Media, vol. 86, pp. 495–515, 2011. [CrossRef] [Google Scholar]
  13. H. Andrä et al., “Digital rock physics benchmarks-part II: Computing effective properties,” Comput. Geosci., vol. 50, pp. 33–43, 2013. [Google Scholar]
  14. T. Ramstad, N. Idowu, C. Nardi, and P.E. Øren, “Relative Permeability Calculations from Two-Phase Flow Simulations Directly on Digital Images of Porous Rocks,” Transp. Porous Media, 2012. [Google Scholar]
  15. I. Shikhov and C.H. Arns, “Evaluation of Capillary Pressure Methods via Digital Rock Simulations,” Transp. Porous Media, 2015. [Google Scholar]
  16. M.A. Knackstedt, S. Latham, M. Madadi, A. Sheppard, T. Varslot, and C. Arns, “Digital rock physics: 3D imaging of core material and correlations to acoustic and flow properties,” Lead. Edge, 2009. [Google Scholar]
  17. Y. Keehm, T. Mukerji, and A. Nur, “Computational rock physics at the pore scale: Transport properties and diagenesis in realistic pore geometries,” Lead. Edge, 2002. [Google Scholar]
  18. H. Andrä et al., “Digital rock physics benchmarks-Part I: Imaging and segmentation,” Comput. Geosci., vol. 50, pp. 25–32, 2013. [Google Scholar]
  19. P.C. Carman, “Fluid flow through granular beds,” Trans. Inst. Chem. Eng., vol. 15, pp. 150–166, 1937. [Google Scholar]
  20. S. Kuwabara, “The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers,” J. Phys. Soc. Japan, 1959. [Google Scholar]
  21. S. Mauran, L. Rigaud, and O. Coudevylle, “Application of the carman-kotenzy correlation to a high-porosity and anisotropic consolidated medium: The compressed expanded natural graphite,” Transp. Porous Media, 2001. [Google Scholar]
  22. P.N. Singh and W.W. Wallender, “Effects of Adsorbed Water Layer in Predicting Saturated Hydraulic Conductivity for Clays with Kozeny–Carman Equation,” J. Geotech. Geoenvironmental Eng., 2008. [Google Scholar]
  23. L. Mosser, O. Dubrule, and M.J. Blunt, “Reconstruction of three-dimensional porous media using generative adversarial neural networks,” Phys. Rev. E, 2017. [Google Scholar]
  24. M. Andrew, “A quantified study of segmentation techniques on synthetic geological XRM and FIB-SEM images,” Comput. Geosci., vol. 22, no. 6, pp. 1503–1512, 2018. [CrossRef] [Google Scholar]
  25. O. Sudakov, E. Burnaev, and D. Koroteev, “Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks,” Comput. Geosci., vol. 127, pp. 91–98, 2019. [Google Scholar]
  26. J. Bear, “Dynamics of Fluids in Porous Media,” Soil Sci., 2006. [Google Scholar]
  27. P.S. Ringrose, a.W. Martinius, and J. Alvestad, “Multiscale geological reservoir modelling in practice,” Geol. Soc. London, Spec. Publ., vol. 309, no. 1, pp. 123–134, 2008. [CrossRef] [Google Scholar]
  28. M. Andrew, “Comparing organic-hosted and intergranular pore networks: topography and topology in grains, gaps and bubbles,” Geol. Soc. London, Spec. Publ., vol. 484, pp. SP484--4, 2018. [Google Scholar]
  29. T. Phenrat, H.J. Kim, F. Fagerlund, T. Illangasekare, R.D. Tilton, and G.V. Lowry, “Particle size distribution, concentration, and magnetic attraction affect transport of polymermodified Fe0 nanoparticles in sand columns,” Environ. Sci. Technol., 2009. [Google Scholar]
  30. F. De Smedt and P.J. Wierenga, “Solute Transfer Through Columns of Glass Beads,” Water Resour. Res., 1984. [Google Scholar]
  31. P.E. Øren and S. Bakke, “Process based reconstruction of sandstones and prediction of transport properties,” Transp. Porous Media, vol. 46, no. 2–3, pp. 311–343, 2002. [Google Scholar]
  32. S. Bakke and P.-E. Øren, “3-D Pore-Scale Modelling of Sandstones and Flow Simulations in the Pore Networks,” SPE J., vol. 2, no. 02, pp. 136–149, 1997. [CrossRef] [Google Scholar]
  33. T. Lerdahl, P.E. Oren, and S. Bakke, “A predictive network model for three-phase flow in porous media,” SPE/DOE Improv. Oil Recover. Symp., 2000. [Google Scholar]
  34. P.A. Cundall, “Formulation of a threedimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks,” Int. J. Rock Mech. Min. Sci., 1988. [Google Scholar]
  35. A. Rabbani, S. Jamshidi, and S. Salehi, “An automated simple algorithm for realistic pore network extraction from micro-tomography images,” J. Pet. Sci. Eng., vol. 123, pp. 164–171, 2014. [Google Scholar]
  36. M.G. Andrew, H.P. Menke, M.J. Blunt, and B. Bijeljic, “The Imaging of Dynamic Multiphase Fluid Flow Using Synchrotron-Based X-ray Microtomography at Reservoir Conditions,” Transp. Porous Media, vol. 110, pp. 1–24, 2015. [Google Scholar]
  37. A.Q. Raeini, B. Bijeljic, and M.J. Blunt, “Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media,” Phys. Rev. E, vol. 96, no. 1, 2017. [Google Scholar]
  38. H. Dong and M.J. Blunt, “Pore-network extraction from micro-computerized-tomography images,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 80, no. 3, 2009. [Google Scholar]
  39. Gilles Louppe, “Understanding Random Forests: From Theory to Practice,” 2014. [Google Scholar]
  40. S. Linden, A. Wiegmann, and H. Hagen, “The LIR space partitioning system applied to the Stokes equations,” Graph. Models, vol. 82, pp. 58–66, 2015. [Google Scholar]
  41. P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach. Learn., 2006. [Google Scholar]
  42. H.P. Menke, Y. Gao, S. Linden, and M.G. Andrew, “Using nano-XRM and high-contrast imaging to inform micro-porosity permeability during Stokes-Brinkman single and two-phase flow simulations on micro-CT images,” Adv. Water Resour. [Google Scholar]
  43. H. Okabe and M.J. Blunt, “Prediction of permeability for porous media reconstructed using multiple-point statistics,” Phys. Rev. E -Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., 2004. [Google Scholar]
  44. A.L. Herring, V. Robins, and A.P. Sheppard, “Topological Persistence for Relating Microstructure and Capillary Fluid Trapping in Sandstones,” Water Resour. Res., 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.