Open Access
Issue
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01002
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202020101002
Published online 23 October 2020
  1. Kalyakin, S.A., Shevtsov, N.R., & Kupenko, I.V. (2012). Sozdanie effektivnoy sistemy vzryvozashchity ugolnykh shakht. Ugol Ukrainy,(2) 24–30. Retrived from http://nbuv.gov.ua/UJRN/ugukr_2012_2_9 [Google Scholar]
  2. Bondarenko, V., Kovalevska, I., Lysenko, R., & Malova, O. (2019). The XIII International Research and Practice Conference “Ukrainian School of Mining Engineering” as a step to the new direction of innovative technologies and intelligent systems in the mining industry. E3S Web of Conferences,(123),00001.https://doi.org/10.1051/e3sconf/201912300001 [Google Scholar]
  3. Bondarenko, V., & Dychkovskiy, R. (2006). Methods of extraction of thin and rather thin coal seams in the works of the scientists of the underground mining faculty (National Mining University). New Technological Solutions in Underground Mining International Mining Forum 2006, 21–25. [Google Scholar]
  4. Bondarenko, V.I., Griadushchiy, Y.B., Dychkovskiy, R.O., Korz, P.P., & Koval, O.I. (2007). Advanced experience and direction of mining of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining International Mining Forum 2007, 1–7. [Google Scholar]
  5. Kostikov, R.R. (1995). Dvukhvalentnyy uglerod. Sorovskiy Obrazovatelnyy Zhurnal, (1), 67–73. [Google Scholar]
  6. Shevtsov, N.R. (1992). Teoriya lokalizatsii vzryva, sposoby i sredstva vzryvozashchity gornykh vyrabotokpri vzryvnykh rabotakh. Ph.D. Thesis. Donetsk, Ukraine: IHTM. [Google Scholar]
  7. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi VisnykNatsionalnoho Hirnychoho Universytetu, (5), 24–30. [Google Scholar]
  8. Alexeev, A.D., & Vasylenko, T.A., & Ulyanova, E.V. (2004). Phase states of methane in fossil coals. Solid state communications, 730(10), 669–673. https://doi.org/10.1016/i.ssc.2004.03.034 [Google Scholar]
  9. Bondarenko, V., Kovalevska, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. The Netherlands, Leiden: CRC Press/Balkema. https://doi.org/10.1201/b17547 [Google Scholar]
  10. Ayruni, A.T. (1987). Prognozirovanie i predotvrashchenie gazodinamicheskikh yavleniy v ugol’nykh shakhtakh. Moskva: Nauka, 310. [Google Scholar]
  11. Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., & Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47), 74–78. [Google Scholar]
  12. Sribna, Y., Trokhymets, O., Nosatov, I., & Kriukova, I. (2019). The globalization of the world coal market - contradictions and trends. E3S Web of Conferences, (123), 01044. https://doi.org/10.1051/e3sconf/201912301044 [Google Scholar]
  13. Makogon, Yu.F., & Morozov, I.F. (1973). Vnezapnye vybrosy i uchastie v nikh metana v gidratnom sostoyanii. Bezopasnost’ truda vpromyshlennosti, (12), 36–37. [Google Scholar]
  14. Makogon, Yu.F. (2003). Prirodnye gazovye gidraty: rasprostranenie, modeli obrazovaniya, resursy. Rossiyskiy Khimicheskiy Zhurnal, 48(3), 70–79. [Google Scholar]
  15. Bondarenko, V., Sai, K., Prokopenko, K., & Zhuravlov, D. (2018). Thermodynamic and geomechanical processes research in the development of gas hydrate deposits in the conditions of the Black Sea. Mining of Mineral Deposits, 12(2), 104–115.https://doi.org/10.15407/mining12.02.104 [CrossRef] [Google Scholar]
  16. Bondarenko, V.I., & Sai, K.S. (2018). Process pattern of heterogeneous gas hydrate deposits dissociation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 21–28.https://doi.org/10.29202/nvngu/2018-2/4 [CrossRef] [Google Scholar]
  17. Aregbe, A.G. (2017). Gas hydrate - properties, formation and benefits. Open Journal of Yangtze Oil and Gas, 2(1), 27–44. https://doi.org/10.4236/ojogas.2017.21003 [CrossRef] [Google Scholar]
  18. Giricheva, N.I., Ishchenko, A.A., Yusupov, V.I., Bagratashvili, V.N., & Girichev, G.V. (2014). Struktura i energetika metanovykh gidratov. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya: Khimiya i Khimicheskaya Tekhnologiya, 57(9), 3–9. [Google Scholar]
  19. Dyrdin, V.V., Smirnov, V.G., & Shepeleva, S.A. (2013). Parameters of Methane Condition during Phase Transitionat the Outburst-Hazardous Coal Seam Edges. Journal of Mining Science, 49(6), 908–912. https://doi.org/10.1134/S1062739149060099 [CrossRef] [Google Scholar]
  20. Smirnov, V.G., Manakov, A.Yu., Ukraintseva, E.A, Villevald, G.V., Karpova, T.D., Dyrdin, V.V., Lyrshchikov, S.Yu., Ismagilov, Z.R., Terekhova, I.S., & Ogienko, A.G. (2016). Formation and decomposition of methane hydrate in coal. Fuel, (166), 188–195. https://doi.org/10.1016/j.fuel.2015.10.123 [CrossRef] [Google Scholar]
  21. Smirnov, V.G., Manakov, A.Ju., Dyrdin, V.V., & Ismagilov, Z.R. (2017). Formirovanie gidratov metana v prirodnom ugle. Vestnik Nauchnogo Tsentra po Bezopasnosti Rabot v Ugolnoy promyshlennosti, (1), 13–25. [Google Scholar]
  22. Smirnov, V.G., Dyrdin, V.V., Ismagilov, Z.R., Kim, T.L., & Manakov, A.Ju. (2017). O vliyanii form svyazi metana s ugolnoy matritsey na gazodinamicheskie yavleniya, voznikayushhie pri podzemnoy razrabotke ugolnykh plastov. Vestnik Nauchnogo Tsentra po Bezopasnosti Rabot v Ugolny Promyshlennosti, (1), 34–41. [Google Scholar]
  23. Hanushevych, K., & Srivastava, V. (2017). Coalbed methane: places of origin, perspectives of extraction, alternative methods of transportation with the use of gas hydrate and nanotechnologies. Mining of Mineral Deposits, 11(3), 23–33.https://doi.org/10.15407/mining11.03.023 [CrossRef] [Google Scholar]
  24. Kalacheva, L. P., & Rozhin, I. I. (2017). The influence of the chloride-calcium-type water composition on the properties of natural gas hydrates. Neftegazovaya Geologiya. Teoriya i Praktika, 12(3), 1–13. https://doi.org/10.17353/2070-5379/25 2017 [CrossRef] [Google Scholar]
  25. Kobolev, V. (2017). Structural, tectonic and fluid-dynamic aspects of deep degassing of the black sea megatrench. Mining of Mineral Deposits, 11(1), 31–49.https://doi.org/10.15407/mining11.01.031 [CrossRef] [Google Scholar]
  26. Maksymova, E., Ovchynnikov, M., Lysenko, R., & Kostrytska, S. (2018). Physical and chemical methods of methane utilization in Ukrainian coal mines. Solid State Phenomena, (277), 147–156. https://doi.org/10.4028/www.scientific.net/SSP.277.147 [CrossRef] [Google Scholar]
  27. Bondarenko, V., Svietkina, O., & Sai, K. (2018). Effect of mechanoactivated hemical additives on the process of gas hydrate formation. Eastern-European Journal of Enterprise Technologies, 1(6(91)), 17–26. https://doi.org/10.15587/1729-4061.2018.123885 [CrossRef] [Google Scholar]
  28. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Collection - Mining of Mineral Deposits 2013, 203–205. https://doi.org/10.1201/b16354-37 [Google Scholar]
  29. Bondarenko, V., Sai, K., Ganushevych, K., & Ovchynnikov, M. (2015). The results of gas hydrates process research in porous media. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 123–127. https://doi.org/10.1201/b19901 [Google Scholar]
  30. Bondarenko, V., Svietkina, O., & & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5(6(89)), 48–55. https://doi.org/10.15587/1729-4061.2017.112313 [CrossRef] [Google Scholar]
  31. Kuzmenko, O.M., & Petlovanyi, M.V. (2015). Substantiation the expediency of fine gridding of cementing material during backfill works. Mining of Mineral Deposits, 9(2), 183–190. https://doi.org/10.15407/mining09.02.183 [CrossRef] [Google Scholar]
  32. Svetkina, E.Yu., & Petlovanyi, M.V. (2012). Zakonomernosti formirovaniya struktury i prochnosti tverdeyushchey zakladki pri raznoy dispersnosti vyazhushchego materiala. Zbirnyk Naukovykh Prats Natsionalnoho Hirnychoho Universytetu, (37), 80–86. [Google Scholar]
  33. Opredelenie udelnoy poverkhnosti poroshkov po soprotivleniyu filtratsii razrezhennogo gaza. Metodika opredeleniya. (1979). Moskva: AN SSSR. [Google Scholar]
  34. Kuzmenko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Annual Scientific-Technical Collection - Mining of Mineral Deposits 2013, 45–48. https://doi.org/10.1201/b16354-10 [Google Scholar]
  35. Korsakov, V.G., Shelomentseva, I.V., Yur’yevskaya, I.M., & Petrova, L.I. (1983). Issledovanie energeticheskikh kharakteristik i prognozirovanie fiziko-khimicheskikh i tekhnicheskikh svoystv materialov. Napravlennyy sintez tverdykh veshchestv, (1), 158–174. [Google Scholar]
  36. Subbotin, O.S., Adamov, T.P., Belosludov, R.V., Mizuseki, Ch., Kavazoje, Jo., & Belosludov, V.R. (2012). Teoretichekoe issledovanie usloviy obrazovaniya gidratov ozona. Zhurnal Strukturnoy Khimii, 53(4), 640–646. [Google Scholar]
  37. Vylezhagin, V.N., Egorov, P.V., & Murashev, V.I. (1990). Strukturnye modeli gornogo massiva v mekhanizme geomekhanicheskikh protsessov. Novosibirsk: Nauka, 291 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.