Open Access
Issue
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01003
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202020101003
Published online 23 October 2020
  1. Sribna, Y., Trokhymets, O., Nosatov, I., & Kriukova, I. (2019). The globalization of the world coal market - contradictions and trends. E3S Web of Conferences, 123, 01044. https:// doi.org/10.1051le3sconfl201912301044 [Google Scholar]
  2. Kovalevska, I., Barabash, M., & Snihur, V. (2018). Development of a research methodology and analysis of the stress state of a parting under the joint and downward mining of coal seams. Mining of Mineral Deposits, 12(1), 76–84. https:// doi.orgl10.15407lmining12.01.076 [CrossRef] [Google Scholar]
  3. Barabash, M.V. (2017). Intensyfikatsiia hirnychykh robit pry sumisnomu vidpratsiuvanni vuhilnykh plastiv z urakhuvanniam zon znemitsnennia mizhplastia. PhD Thesis. Dnipro, Ukraine: NHU. [Google Scholar]
  4. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive Technologies of Coal, Coalbed Methane, and Ores Mining. The Netherlands: CRC PresslBalkema, 521. https://doi.orgl10.1201lb17547 [Google Scholar]
  5. Bondarenko, V., Kovalevska, I., Symanovych, H., Barabash, M., & Snihur, V. (2018). Assessment of parting rock weak zones under the joint and downward mining of coal seams. E3S Web of Conferences, (66), 03001. https://doi.orgl10.1051le3sconfl20186603001 [CrossRef] [EDP Sciences] [Google Scholar]
  6. Barabash, M. (2016). Analiz sostoyaniya nadrabotannogo i podrabotannogo mezhduplast’ya smezhnykh plastov pri ikh sovmesnoy otrabotke v niskhodyashchem poryadke. Rozrobka Rodovyshch, 10(2), 34–39. [Google Scholar]
  7. Pivnyak, G., Samusia, V., Oksen, Y., & Radiuk, M. (2015). Efficiency increase of heat pump technology for waste heat recovery in coal mines. New Developments in Mining Engineering, 1–4. https://doi.orgl10.1201lb19901-2 [Google Scholar]
  8. Malkowski, P., Majcherczyk, T., & Niedbalski, Z. (2006). Speed of Roof Rock Separation and a Type of Working,Aos Support. International Mining Forum 2006, New Technological Solutions in Underground Mining, 39–47. https://doi.orgl10.1201lnoe0415401173.ch6 [Google Scholar]
  9. Witek, M., & Prusek, S. (2016). Numerical calculations of shield support stress based on laboratory test results. Computers and Geotechnics, (72), 74–88. https://doi.orgl10.1016lj.compgeo.2015.11.007 [Google Scholar]
  10. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchuk, Z. (2018). Analytical Research of the Stress-Deformed State in the Rock Massif around Faulting. International Journal of Engineering Research in Africa, (35), 77–88.https://doi.orgl10.4028lwww.scientific.net/jera.35.77 [CrossRef] [Google Scholar]
  11. Bondarenko V., Symanovych, H., Kicki J., Barabash, M., Salieiev, I. (2019). The influence of rigidity of the collapsed roof rocks in the mined-out space on the state of the preparatory mine workings. Mining of Mineral Deposits, 13(2), 27–33. https://doi.org/10.33271/mining13.02.027 [CrossRef] [Google Scholar]
  12. Kovalevska, I., Samusia, V., Kolosov, D., Snihur, V., & Pysmenkova T. (2020). Stability of the overworked slightly metamorphosed massif around mine working. Mining of Mineral Deposits, 14(2):43–52. https://doi.org/10.33271/mining14.02.043 [CrossRef] [Google Scholar]
  13. Kovalevska, I., Barabash, M., Husiev, O., & Snihur, V. (2018). Interaction of deformation- strength characteristics of the support load-bearing elements in the preparatory workings. E3S Web of Conferences, (60), 00002. https://doi.org/10.1051/e3sconf/20186000002 [CrossRef] [EDP Sciences] [Google Scholar]
  14. Kyrychenko, Y., Samusia, V., & Kyrychenko, V. (2012). Software development for the automatic control system of deep-water hydrohoist. Geomechanical Processes During Underground Mining - Proceedings of the School of Underground Mining, 81–86. https://doi.org/10.1201/b13157-14 [Google Scholar]
  15. Bondarenko, V., Kovalevs’ka, I., & Fomychov, V. (2012). Features of carrying out experiment using finite-element method at multivariate calculation of “mine massif - combined support” system. Geomechanical Processes During Underground Mining - Proceedings of the School of Underground Mining, 7–14. http://dx.doi.org/10.1201/b13157-3 [Google Scholar]
  16. Inkin, O., Tishkov, V., Dereviahina, N., & Sotskov, V. (2018). Integrated analysis of geofiltrational parameters in the context of underground coal gasification relying upon calculations and modeling. E3S Web of Conferences, (60), 00035. [CrossRef] [EDP Sciences] [Google Scholar]
  17. Timoshuk, V., Tishkov, V., Inkin, O., & Sherstiuk, E. (2012). Influence of coal layers gasification on bearing rocks. Geomechanical Processes During Underground Mining - Proceedings of the School of Underground Mining, 109–113. https://doi.org/10.1201/b13157-19 [Google Scholar]
  18. Kovalevska, I., Symanovych, G., & Fomychov, V. (2013). Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual Scientific- Technical Collection - Mining of Mineral Deposits, 159–163. http://dx.doi.org/10.1201/b16354-28 [Google Scholar]
  19. Bondarenko, V., Hardygora, M., Symanovych, H., Sotskov, V., & Snihur, V. (2016). Numerical methods of geomechanics tasks solution during coal deposits’ development. Mining of Mineral Deposits, 10(3), 1–12. https://doi.org/10.15407/mining10.03.001 [Google Scholar]
  20. Walentek, A., Janoszek, T., Prusek, S., & Wrana, A. (2019). Influence of longwall gateroad convergence on the process of mine ventilation network-model tests. International Journal of Mining Science and Technology, 29(4), 585–590. https://doi.org/10.1016/j.ijmst.2019.06.013 [Google Scholar]
  21. Usachenko, B.M. (1979). Svoystva porod i ustoychivost’ gornykh vyrabotok. Kyiv: Naukova dumka, 136. [Google Scholar]
  22. Usachenko, B.M., Kirichenko, V.Ya., & Shmigol’, A.V. (1992). Okhrana podgotovitel’nykh vyrabotokglubokikh gorizontov shakht Zapadnogo Donbassa. Moskva: TsNIEIugol’, 168. [Google Scholar]
  23. Usachenko, B.M., Cherednichenko, V.P., & Golovchanskiy, I.Ye. (1990). Geomekhanika okhrany vyrabotok v slabometamorfizirovannykh porodakh. Kyiv: Naukova dumka, 144. [Google Scholar]
  24. Malkowski, P., & Ostrowski, L. (2019). Convergence monitoring as a basis for numerical analysis of changes of rock-mass quality and hoek-brown failure criterion parameters due to longwall excavation. Archives of Mining Sciences, 64(1), 93–118. https://doi.org/10.24425/ams.2019.126274 [Google Scholar]
  25. Pisarenko, G.S. (1979). Soprotivlenie materialov. Kyiv: Vyshcha shkola, 696. [Google Scholar]
  26. Anur’ev, V.I. (1980). Spravochnik konstruktora-mashinostroitelya. Tom 1. Moskva: Mashinostroenie, 728. [Google Scholar]
  27. Geleskul, M.N., & Karetnikov, V.N. (1982). Spravochnik po krepleniyu kapital’nykh i podgotovitel’nykh gornykh vyrabotok. Moskva: Nedra, 479. [Google Scholar]
  28. Koval, V., Mikhno, I., Trokhymets, O., Kustrich, L., & Vdovenko, N. (2020). Modeling the interaction between environment and the economy considering the impact on ecosystem. E3S Web Conferences, (166), 13002. https://doi.org/10.1051/e3sconf/202016613002 [CrossRef] [Google Scholar]
  29. Mel’nikov, N.I. (1980). Ankernaya krep’. Moskva: Nedra, 252. [Google Scholar]
  30. Malashkevych, D., Sotskov, V., Medyanyk, V., & Prykhodchenko, D. (2018). Integrated evaluation of the worked-out area partial backfill effect of stress-strain state of coal-bearing rock mass. Solid State Phenomena, (277), 213–220. https://doi.org/10.4028/www.scientific.net/SSP.277.213 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.