Open Access
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01018
Number of page(s) 15
Published online 23 October 2020
  1. Sladkowski, A., Utegenova, A., Kolga, A.D., Gavrishev, S.E., Stolpovskikh, I., & Taran, I. (2019). Improving the efficiency of using dump trucks under conditions of career at open mining works. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 36-42. [CrossRef] [Google Scholar]
  2. Zabolotny, K., & Panchenko, E. (2010). Definition of rating loading in spires of multilayer winding of rubberrope cable. New Techniques and Technologies in Mining — Proceedings of the School of Underground Mining, 223-229. [CrossRef] [Google Scholar]
  3. Larsson, L.V., Larsson, K.V. (2014). Simulation and Testing of Energy Efficient Hydromechanical Drivelines for Construction Machinery. Master’s Thesis (p. 126). Linköping, Sweden: Linköping University. [Google Scholar]
  4. Taran, I., & Klymenko, I. (2014). Innovative mathematical tools for benchmarking transmissions of transport vehicles. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 76-81. [Google Scholar]
  5. Anderl, T., Winkelhake, J., & Scherer, M. (2012). Power-split transmissions for construction machinery. In Proceedings of the 8th International Fluid Power Conference (pp. 189-201). Dresden, Germany. [Google Scholar]
  6. Macor, A., & Rossetti, A. (2011). Optimization of hydro-mechanical power split transmissions. Mechanism and Machine Theory, 46(12),1901-1919. [Google Scholar]
  7. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (Eds.). (2015). New Developments in Mining Engineering 2015. London, United Kingdom: CRC Press, Taylor & Francis Group. [Google Scholar]
  8. Taran, I., & Bondarenko, A. (2017). Conceptual approach to select parameters of hydrostatic and mechanical transmissions for wheel tractors designed for agrucultural opeations. Archives of Transport, 41(1),89-100. [CrossRef] [Google Scholar]
  9. Samorodov, V., & Pelipenko E. (2016). Analysis of the development modern transmission wheeled tractors. Wspolpraca Europejska, (6), 49-57. [Google Scholar]
  10. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., & Illiashov, M. (2012). Geomechanical Processes During Underground Mining, 238 p. Book. [Google Scholar]
  11. Samorodov, V., Taran, I., Bondarenko, A., & Klymenko, I. (2019). Comparative analysis of transmissions of mine diesel locomotive with different component schemes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 87-92. [Google Scholar]
  12. Gornostayev, S.S., Crocket, J.H., Mochalov, A.G., & Laajoki, K.V.O. (1999). The platinum- group minerals of the Baimka placer deposits, Aluchin horst, Russian Far East. Canadian Mineralogist, 37(5),1117-1129. [Google Scholar]
  13. Chernai, A.V., Sobolev, V.V., Chernai, V.A., Ilyushin, M.A., & Dlugashek, A. (2003). Laser ignition of explosive compositions based on di-(3-hydrazino-4-amino-1,2,3-triazole)-copper(II) perchlorate. Combustion, Explosion and Shock Waves, 39(3),335-339. [CrossRef] [Google Scholar]
  14. Shashenko, A., Gapieiev, S., Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2),341-348. [Google Scholar]
  15. Sobolev, V. V., & Usherenko, S. M. (2006). Shock-wave initiation of nuclear transmutation of chemical elements. Journal de Physique IV (Proceedings), (134), 977-982. [CrossRef] [Google Scholar]
  16. Mikhlin, Y. V., & Zhupiev, A. L. (1997). An application of the ince algebraization to the stability of non-linear normal vibration modes. International Journal of Non-Linear Mechanics, 32(2), 393-409. [Google Scholar]
  17. Litvinova, Ya., Nosal-Hoy, K., Solecka, K., & Taran, I. (2020). Improvement of efficiency of processes of mining product processing at transport hubs. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 141-145. [CrossRef] [Google Scholar]
  18. Protsiv, V., Novytskyi, O., & Samoilov, A. (2012). Advantages of magnetic loader over rail brakes on mine locomotive. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 79-83. [Google Scholar]
  19. Singh, R.B., Kumar, R., & Das, J. (2013). Hydrostatic transmission systems in heavy machinery: overview. International Journal of Mechanical and Production Motorering, 1(4),47-51. [Google Scholar]
  20. Matsyuk, I., & Shlyahov, E. (2015). The research of plane link complex-structure mechanisms by vector algebra methods. Eastern-European Journal of Enterprise Technologies, 3(7(75)), 34. [Google Scholar]
  21. Taran, I. (2012). Interrelation of circular transfer ratio of double-split transmissions with regulation characteristic in case of planetary gear output. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 75-85. [Google Scholar]
  22. Rydberg, K. (2010). Hydro-mechanical Transmissions. Fluid and Mechatronic Systems, (2), 51-60. [Google Scholar]
  23. Karbaschian, M., & Soffker, D. (2014). Review and Comparison of Power Management Approaches for Hybrid Vehicles with Focus on Hydraulic Drives. Energies, 7(6),3512-3536. [Google Scholar]
  24. Tikkanen, S, Hurtala, K, Vilenius, M. (1997). Design aspects of tractive control in hydrostatic power transmissions. In The First Scandinavian International Conference on Fluid Power. Linkohing, Sweden. [Google Scholar]
  25. Erikkila, M. (2009). Model-based Design of Power-Split Drivelines. PhD Thesis. Tampere, Finland: Tampere University of Technology. [Google Scholar]
  26. Hu, J., Wei, C., Yuan, S., & Jing, C. (2009). Characteristics on Hydro-mechanical Transmission in Power Shift Process. Chinese Journal of Mechanical Engineering, 22(01), 50. [CrossRef] [Google Scholar]
  27. Cheong, K., Li, P., & Chase, T. (2011). Optimal design of power-split transmissions for hydraulic hybrid passenger vehicles. In Proceedings of the 2011 American Control Conference (pp. 32953300). San Francisco, USA. [Google Scholar]
  28. Nilsson, T., Froberg, A., & Aslund, J. (2012). Fuel potential and prediction sensitivity of a powersplit CVT in a wheel loader. IFACProceedings, 45(30),49-56. [Google Scholar]
  29. Liu, X., Sun, D., Qin, D., & Liu, J. (2017). Achievement of Fuel Savings in Wheel Loader by Applying Hydrodynamic Mechanical Power Split Transmissions. Energies, 10(9), 1267. [Google Scholar]
  30. Comellas, M., Pijuan, J., Potau, X., Nogues, M., & Roca, J. (2013). Efficiency sensitivity analysis of a hydrostatic transmission for an off-road multiple axle vehicle. International Journal of Automotive Technology, 14(1),151-161. [CrossRef] [Google Scholar]
  31. Schulte, H. (2007). Control-oriented Modeling of Hydrostatic Transmissions Considering Leakage Losses. IFAC Proceedings, 40(21),103-108. [Google Scholar]
  32. Macor, A., & Rossetti, A. (2013). Fuel consumption reduction in urban buses by using power split transmissions. Energy Conversion and Management, (71), 159-171. [Google Scholar]
  33. Kim, H., Oh, K., Ko, K., Kim, P., & Yi, K. (2016). Modeling, validation and energy flow analysis of a wheel loader. Journal of Mechanical Science and Technology, 30(2),603-610. [CrossRef] [Google Scholar]
  34. Zhang, H., Liu, F., Zhu, S., Xiao, M., Wang, G., Wang, G., & Zhang, W. (2016). The optimization design of a new type of hydraulic power-split continuously variable transmission for high-power tractor. Journal of Nanjing Agricultural University, (39), 156-165. [Google Scholar]
  35. Taran, I.A. (2012). Laws of power transmission on branches of double-split hydrostatic mechanical transmissions. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 69-75. [Google Scholar]
  36. Novytskyi, O., Taran, I., & Zhanbirov, Z. (2019). Increasing mine train mass by means of improved efficiency of service braking. E3S Web of Conferences, (123), 01034. [CrossRef] [EDP Sciences] [Google Scholar]
  37. Taran, I., Klymenko, I. (2013). Transfer ratio of double-split transmissions in case of planetary gear input. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66. [Google Scholar]
  38. Gruhler, G., Bublikov, A., Gorlach, I., & Cawood, G. (2015). Control strategy for a mobile platform with an omni-directional drive. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 84-90. [Google Scholar]
  39. Deryugin, O., & Cheberyachko, S. (2015). Substatiation of truck selection in terms of psychophysiologic stress on a driver minimizing. Eastern-European Journal of Enterprise Technologies, (3(3(75)), 15-22. [Google Scholar]
  40. Pettersson, K. (2013) Design Automation of Complex Hydromechanical Transmissions. Linköping Studies in Science and Technology. Thesis, (1620), 458-467. [Google Scholar]
  41. Taran, I., & Klymenko, I. (2017). Analysis of hydrostatic mechanical transmission efficiency in the process of wheeled vehicle braking. Transport Problems, 12(SE), 45-56. [Google Scholar]
  42. Samorodov, V.B. (1999). Vyvod kinematicheskikh bazisnykh matrits i sistemnyy analiz kinematiki stupenchatykh mekhanicheskikh i gidroob’yomno-mekhanicheskikh trasmissiy. Sbornik Nauchnykh Trudov KhGPU, (7), 363-370. [Google Scholar]
  43. Samorodov, V., Kozhushko, A., & Pelipenko, E. (2016). Formation of a rational change in controlling continuously variable transmission at the stages of a tractor’s acceleration and braking. Eastern-European Journal of Enterprise Technologies, 4(7(82)), 37-44. [Google Scholar]
  44. Samorodov, V.B., & Bondarenko, A.I. (2012). Tendentsii ta perspektyvy zastosuvannia v avtomobile- i traktorobuduvanni bezstupinchastykh hidroobiemno-mekhanichnykh transmisii. Avtomobilnyi transport, (30), 13-22. [Google Scholar]
  45. Beshta, O.S. (2012). Electric drives adjustment for improvement of energy efficiency of technological processes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 98-107. [Google Scholar]
  46. Carl, B., Ivantysynova, M., & Williams, K. (2006). Comparison of Operational Characteristics in Power Split Continuously Variable Transmissions. SAE Technical Paper Series. [Google Scholar]
  47. Rebrov, A.Y., Korobka, T.A., & Lakhman, S.V. (2012). Matematicheskaya model’ dizel’nogo dvigatelya v bezrazmernykh velichinakh s uchetom yego zagruzki i podachi topliva. Visnyk Natsionalnoho Tekhnichnoho Universytetu “KhPF”, (19), 31-36. [Google Scholar]
  48. Kostyukevich, A.I., Taran, I.A., Kovtanets, M.V., & Nozhenko, V.S. (2011). Eksperimentalnye issledovaniya kharakteristik stsepleniya v kontakte “koleso-rels” pri nalichii promezhutochnoy sredy. Visnyk Natsionalnoho Tekhnichnoho Universytetu “KhPF”. Tematychnyi vypusk: Avtomobile- i traktorobuduvannia, (56), 56-62. [Google Scholar]
  49. Bondarenko, A.I. (2008). Vybor i obosnovanie approksimiruyushchey funktsii p-S diagrammy. Uchenye Zapisi Krymskogo Inzhenerno-Pedagogicheskogo Universiteta, (16), 95-98. [Google Scholar]
  50. Pacejka, H., Sharp R.S. (2007). Shear Force Development by Pneumatic Tyres in Steady State Conditions: A Review of Modelling Aspects. Vehicle System Dynamics, 20(3-4), 121-175. [CrossRef] [Google Scholar]
  51. Burckhardt, M. (1984). Antiblochiersysteme im Vergleich. Olhydraul UndPneum, (28), 489-491. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.