Open Access
Issue
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01026
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202020101026
Published online 23 October 2020
  1. Stupnik, M., Kolosov, V., Pysmennyi, S. & Kovbyk, K. (2019). Selective mining of complex stuctured ore deposits by open stope systems. E3S Web of Conferences, (123), 01007. https://doi.org/10.1051/e3sconf/201912301007 [CrossRef] [EDP Sciences] [Google Scholar]
  2. Stupnik, M.I., Kalinichenko, V.O., Kalinichenko, O.V., Muzika, I.O., Fed’ko, M.B., & Pismennyi, S.V. (2015). The research of strain-stress state of magnetite quartzite deposit massif in the condition of mine “Gigant-Gliboka” of central iron ore enrichment works (CGOK). Metallurgical and Mining Industry, (7), 377-383. [Google Scholar]
  3. Stupnik, N., Kalinichenko, V., Pismennij, S. & Kalinichenko, E. (2015). Features of underlying levels opening at “ArsellorMittal Kryvyic Rih” underground mine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 39-44. https://doi.org/10.1201/b19901-8 [CrossRef] [Google Scholar]
  4. Stupnik, N., & Kalinichenko, V. (2012). Parameters of shear zone and methods of their conditions control at underground mining of steep-dipping iron ore deposits in Kryvyi Rig basin. Geomechanical Processes During Underground Mining - Proceedings of the School of Underground Mining, 15-17. https://doi.org/10.1201/b13157-4 [CrossRef] [Google Scholar]
  5. Kalinichenko, O., Fedko, M., Kushnerov, I., & Hryshchenko, M. (2019). Muck drawing by inclined two-dimensional flow. E3S Web of Conferences, (123), 01015.https://doi.org/10.1051/e3sconf/201912301015. [CrossRef] [EDP Sciences] [Google Scholar]
  6. Stupnik, N.I., Kalinichenko, V.A., Fedko, M.B., & Mirchenko, Ye.G. (2013). Prospects of application of TNT-free explosives in ore deposites developed by uderground mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 44-48. [Google Scholar]
  7. Stupnik, M., & Kalinichenko, V. (2013). Magnetite quartzite mining is the future of Kryvyi Rig iron ore basin. Annual Scientific-Technical Collection - Mining of Mineral Deposits 2013, 49-52. https://doi.org/10.1201/b16354-10 [CrossRef] [Google Scholar]
  8. Stupnik, N.I., Kalinichenko, V.A., Fedko, M.B., & Mirchenko, Ye.G. (2013). Influence of rock massif stress-strain state on uranium ore breaking technology. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 11-16. [Google Scholar]
  9. Stupnik, M., Kalinichenko, V., Fedko, M., Kalinichenko, O., Pukhalskyi, V., & Kryvokhin, B. (2019). Investigation of the dust formation process when hoisting the uranium ores with a bucket. Mining of Mineral Deposits, 13(3),96-103. https://doi.org/10.33271/mining13.03.096 [CrossRef] [Google Scholar]
  10. Stupnik, M.I., Kalinichenko, O.V., Kalinichenko, V.O. (2012). Economic evaluation of risks of possible geomechanical violations of original ground in the fields of mines of Kryvyi Rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 126-130. [Google Scholar]
  11. Stupnik, M., Kalinichenko, O., Kalinichenko, V., Pysmennyi, S. & Morhun, O. (2018). Choice and substantiation of stable crown shapes in deep-level iron ore mining. Mining of Mineral Deposits, 12(4),56-62. https://doi.org/10.15407/mining12.04.056 [CrossRef] [Google Scholar]
  12. Kalinichenko, V.O., Dolgikh, O.V., & Dolgikh, L.V. (2019). Digital survey in studying open pit wall deformations. E3S Web of Conferences, (123), 01047. https://doi.org/10.1051/e3sconf/201912301047. [CrossRef] [EDP Sciences] [Google Scholar]
  13. Pysmenniy, S., Shvager, N., Shepel, O. & Kovbyk, K., & Dolgikh O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, (166), 02006. https://doi.org/10.1051/e3sconf/202016602006 [CrossRef] [EDP Sciences] [Google Scholar]
  14. Pysmennyi, S., Brovko, D., Shwager,N., Kasatkina, I., Paraniuk, D., & Serdiuk, O. (2018). Development of complexstructure ore deposits by means of chamber systems under conditions of the Kryvyi Rih iron ore field. Eastern-European Journal of Enterprise Technologies, 5(1(95)), 33-45.’https://doi.org/10.15587/1729-4061.2018.142483 [Google Scholar]
  15. Dolgikh, O., & Dolgikh, L. (2020). The study of the collapse zone by remote methods. E3S Web of Conferences, (166), 03002. https://doi.org/10.1051/e3sconf/202016603002 [CrossRef] [EDP Sciences] [Google Scholar]
  16. Andreev, B.M., Brovko, D.V., & Khvorost, V.V. (2015). Determination of reliability and justification of object parameters on the surface of mines taking into account change-over to the lighter enclosing structures. Metallurgical and Mining Industry, (12), 378-382. [Google Scholar]
  17. Tron, V., Tsokurenko, O., Paraniuk, D., & Haponenko, I. (2019). Formation of the adaptive fuzzy model of the rock geological structure for exploratory drilling. E3S Web of Conferences, (123), 01037. https://doi.org/10.1051/e3sconf/201912301037 [CrossRef] [EDP Sciences] [Google Scholar]
  18. Serhiienko, V. (2019). Defectoscope for monitoring of a concrete timbering of underground constructions. E3S Web of Conferences, (109), 00084.https://doi.org/10.1051/e3sconf/201910900084 [CrossRef] [EDP Sciences] [Google Scholar]
  19. Tarasyutin, V.M. (2015). Geotechnology features of high quality martite ore from deep mines of Kryvyi Rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 54-60. [Google Scholar]
  20. Rymarchuk, B.I., Shepel, O.L., & Khudyk, M.V. (2017). Expediency of application of the vertical concentrated charges to decrease losses of ore on a lying wall of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 32-37. [Google Scholar]
  21. Khomenko, O., & Rudakov, D. (2010). The first Ukrainian corporative university. New Techniques and Technologies in Mining - Proceedings of the School of Underground Mining, 203-206. https://doi.org/10.1201/b11329-34 [CrossRef] [Google Scholar]
  22. Kononenko, M., Khomenko, O., Savchenko, M., & Kovalenko, I. (2019). Method for calculation of drilling-and-blasting operations parameters for emulsion explosives. Mining of Mineral Deposits, 13(3),22-30. https://doi.org/10.33271/mining13.03.022 [CrossRef] [Google Scholar]
  23. Khomenko, O., Rudakov, D., & Kononenko, M. (2011). Automation of drill and blast design. Technical and Geoinformational Systems in Mining: School of Undergroumd Mining 2011, 271275. https://doi.org/10.1201/b11586-45 [Google Scholar]
  24. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining - Proceedings of the School of Underground Mining, 193-197. https://doi.org/10.1201/b11329-32 [Google Scholar]
  25. Khomenko, O., Kononenko, M., & Myronova, I. (2017). Ecological and technological aspects of iron-ore underground mining. Mining of Mineral Deposits, 11(2),59-67.https://doi.org/10.15407/mining11.02.059 [CrossRef] [Google Scholar]
  26. Khomenko, O.Ye. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 44-54. [Google Scholar]
  27. Khomenko, O., Kononenko, M., Kovalenko, I., & Astafiev, D. (2018). Self-regulating roof- bolting with the rock pressure energy use. E3S Web of Conferences, (60), 00009. https://doi.org/10.1051/e3sconf/20186000009 [CrossRef] [EDP Sciences] [Google Scholar]
  28. Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Annual Scientific-Technical Colletion - Mining of Mineral Deposit, 231-235. https://doi.org/10.1201/b16354-43 [CrossRef] [Google Scholar]
  29. Kuz’menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 45-48. https://doi.org/10.1201/b16354-10 [CrossRef] [Google Scholar]
  30. Khomenko, O., Kononenko, M., & Bilegsaikhan, J. (2018). Classification of Theories about Rock Pressure. Solid State Phenomena, (277), 157-167. https://doi.org/10.4028/www.scientific.net/ssp.277.157 [CrossRef] [Google Scholar]
  31. Vladyko, O., Kononenko, M., & Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes During Underground Mining - Proceedings of the School of Underground Mining, 147-150. https://doi.org/10.1201/b13157-26 [CrossRef] [Google Scholar]
  32. Khalymendyk, I., & Baryshnikov, A. (2018). The mechanism of roadway deformation in conditions of laminated rocks. Journal of Sustainable Mining, 17(2),41-47.https://doi.org/10.1016/j.jsm.2018.03.004 [CrossRef] [Google Scholar]
  33. Babets, D.V., Sdvyzhkova, O.O., Larionov, M.H., Tereshchuk, R.M. (2017). Otsinka stiikosti masyvu hirskykh porid, shcho bazuietsia na ymovirnisnomu pidkhodi ta reitynhovykh klasyfikatsiiakh. Naukovyi visnykNHU, (2), 58-64. [Google Scholar]
  34. Malanchuk, Z.R., Moshynskyi, V.S., Korniienko, V.Y., Malanchuk, Y.Z., & Lozynskyi, V.H. (2019). Obgruntuvannia parametriv rozmyvu y peretikannia pulpy tseolit-smektytovoho tufu u vydobuvnii kameri. Naukovyi visnyk NHU, (6), 11-18. [Google Scholar]
  35. Petlovanyi, M., Kuzmenko, O., Lozynskyi, V., Popovych, V., Sai, K., & Saik, P. (2019). Review of man-made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine. Mining of Mineral Deposits, 13(1),24-38.https://doi.org/10.33271/mining13.01.024 [CrossRef] [Google Scholar]
  36. Dychkovskyi, R., Vladyko, O., Maltsev, D., Cabana, E.C. (2018). Some aspects of the compatibility of mineral mining technologies. Rudarsko-Geolośko-Naftni Zbornik, 33(4),73-82. https://doi.org/10.17794/rgn.2018.4.7 [CrossRef] [Google Scholar]
  37. Dreus, A.Yu., Sudakov, A.K., Kozhevnikov, A.A., Vakhalin, Yu.N. (2016). Study on thermal strength reduction of rock formation in the diamond core drilling process using pulse flushing mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 5-10. [Google Scholar]
  38. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). The adaptive control for intensity of ultrasonic influence on iron ore pulp. Metallurgical and Mining Industry, (6), 8-11. [Google Scholar]
  39. Golik, V., Komashchenko, V., & Morkun, V. (2015). Feasibility of using the mill tailings for preparation of self-hardening mixtures. Metallurgical and Mining Industry, 7(3),38-41. [Google Scholar]
  40. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). Ultrasonic facilities for the ground materials characteristics control. Metallurgical and Mining Industry, (2), 31-35.http://www.metaliournal.com.ua/assets/Journal/a6.pdf [Google Scholar]
  41. Morkun, V., Morkun, N., & Pikilnyak, A. (2015). Adaptive control system of ore beneficiation process based on Kaczmarz projection algorithm. Metallurgical and Mining Industry, (2), 35-38. [Google Scholar]
  42. Morkun, V., & Tron, V. (2014) Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry, (6), 4-7. [Google Scholar]
  43. Golik, V., Mitsik, M., Morkun, V., Morkun, N., & Tron, V. (2019). Transportation of concentration and leaching tailings in underground mining of metal deposits. Mining of Mineral Deposits, 13(2),111-120. https://doi.org/10.33271/mining13.02.111 [CrossRef] [Google Scholar]
  44. Morkun, V., Morkun, N., & Tron, V. (2015). Distributed control of ore beneficiation interrelated processes under parametric uncertainty. Metallurgical and Mining Industry, 7(8),18-21. [Google Scholar]
  45. Morkun, V., & Morkun, N. (2018). Estimation of the crushed ore particles density in the pulp flow based on the dynamic effects of high-energy ultrasound. Archives of Acoustics, 43(1),61-67. [Google Scholar]
  46. Morkun, V., Morkun, N., & Pikilnyak, A. (2015). The study of volume ultrasonic waves propagation in the gas-containing iron ore pulp. Ultrasonics, (56), 340-343.https://doi.org/10.1016/i.ultras.2014.08.022 [CrossRef] [PubMed] [Google Scholar]
  47. Morkun, V., Morkun, N., & Pikilnyak, A. (2014) Ultrasonic phased array parameters determination for the gas bubble size distribution control formation in the iron ore flotation. Metallurgical and Mining Industry, (3), 28-31. [Google Scholar]
  48. Morkun, V. & Tron, V. 2014. Ecological and economic optimization of iron ore processing automated control. Metallurgical and Mining Industry, 6(5),8-10. [Google Scholar]
  49. Lutsenko, I., Fomovskaya, E., Koval, S., & Serdiuk, O. (2017). Development of the method of quasioptimal robust control for periodic operational processes. Eastern-European Journal of Enterprise Technologies, 4(2(88)), 52-60. https://doi.org/10.15587/1729-4061.2017.10754 [Google Scholar]
  50. Plevako, V., Potapov,V., Kycenko, V., Lebedynecj I., & Pedorych, I. (2016). Analytical study of the bending of isotropic plates, inhomogeneous in thickness. Eastern-European Journal of Enterprise Technologies, 4(7(82)), 10-16. https://doi.org/10.15587/1729-4061.2016.75052 [CrossRef] [Google Scholar]
  51. Herbert, R., & Nordstrom, A. (2017). Leachate generation and nitrogen release from small-scale rock dumps at the Kiruna iron ore mine. In International Mine Water Association Conference (pp. 140-146). [Google Scholar]
  52. Behzad, Ghodrati, & Uday, Kumar, (2005). Reliability and operating environment-based spare parts estimation approach: A case study in Kiruna Mine, Sweden. Journal of Quality in Maintenance Engineering, 11(2),169-184. https://doi.org/10.1108/13552510510601366 [Google Scholar]
  53. Wimmer, M., Nordqvist, A., Righetti, E., & Petropoulos, N. (2015). Analysis of rock fragmentation and its effect on gravity flow at the Kiruna sublevel caving mine. In 11th International Symposium on Rock Fragmentation by Blasting (pp. 775-791). Carlton VIC: The Australasian Institute of Mining and Metallurgy. [Google Scholar]
  54. Carusone, O., & Hudyma, M. (2017). Variations in apparent stress and energy index as indicators of stress and yielding around excavations. Proceedings of the First International Conference on Underground Mining Technology, 205-218. https://doi.org/10.36487/acg rep/1710 16 carusone [CrossRef] [Google Scholar]
  55. Hudyma, M.R., Potvin, Y, Grant, D.R., Milne, D., Brummer, R.K., & Board, M. (1994). Geomechanics of Sill Pillar Mining. Rock Mechanics Models and Measurements Challenges from Industry. In 1st North American Rock Mechanics Symposium (pp. 969-976). The University of Texas at Austin. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.