Open Access
E3S Web Conf.
Volume 202, 2020
The 5th International Conference on Energy, Environmental and Information System (ICENIS 2020)
Article Number 14005
Number of page(s) 13
Section Decision Support System
Published online 10 November 2020
  1. B. Yuan, H. Nishiura, Estimating the actual importation risk of dengue virus infection among Japanese travelers. PLoS One, 13, 1–12 (2018). [CrossRef] [PubMed] [Google Scholar]
  2. B.P. Statistik Kabupaten Demak . Demak in Figures 2016. (2016). [Google Scholar]
  3. J. Xiang, A. Hansen, Q. Liu, X. Liu, M. Xiaoliang Tong, Y. Sun, S. Cameron, S. Hanson-Easey, G.Soo Han, C. Williams, P. Weinstein, Peng Bi, Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005–2014. Environ Res.,153, 17–26 (2017). [CrossRef] [PubMed] [Google Scholar]
  4. R. Lowe, A. Gasparrini, C.J. Van Meerbeeck, Catherine A. Lippi, R. Mahon, A.R. Trotman, L. Rollock, A.Q. J. Hinds, S.J. Ryan, Anna M. Stewart-Ibarra, Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modeling study. PLoS Med., 15, 1–24 (2018). [Google Scholar]
  5. W. Anggraeni, R. Nurmasari, E. Riksakomara, F. Samopa, R. Prasetyanto Wibowo, L. Condro T., Pujiadi, Modified Regression Approach for Predicting Number of Dengue Fever Incidents in Malang Indonesia, 4th Information Systems International Conference 2017, ISICO 2017, 50, 124-142 (2017) [Google Scholar]
  6. R. Putranda Kristianto, E. Utami, Optimization the parameter of forecasting algorithm by using the genetical algorithm toward the information systems of geography for predicting the patient of dengue fever in district of sragen, Indonesia. Proc - 2017 2nd Int Conf Inf Technol Inf Syst Electr Eng ICITISEE 2017, 124, 45–50 (2018). [Google Scholar]
  7. P. Manivannan, Dr. P. Isakki @ Devi, Dengue fever prediction using K-means clustering algorithm, Proc 2017 IEEE Int Conf Intell Tech Control Optim Signal Process INCOS 2017, 1–5, (2018). [Google Scholar]
  8. D. Saikia, J. Chandra Dutta, Early diagnosis of dengue disease using fuzzy inference system, Int Conf Microelectron Comput Commun MicroCom 2016, 1-6 (2016). [Google Scholar]
  9. T. Rosli Bin Razak, M. Hermi Ramli, R. Abd. Wahab, Dengue notification system using fuzzy logic, Proceeding - 2013 Int Conf Comput Control Informatics Its Appl “Recent Challenges Comput Control Informatics” IC3INA 2013, 231–235 (2013) [Google Scholar]
  10. T. Faisal, M. Nasir Taib, F. Ibrahim, Adaptive Neuro-Fuzzy Inference System for diagnosis risk in dengue patients, Expert Syst Appl, 39, 4483–4495 (2012). [Google Scholar]
  11. I P. Agus Aditya Pramana, W. Anggraeni , Peramalan Jumlah Kasus Demam Berdarah di Inference System. J Tek ITS, 5, 1–6 (2016). [Google Scholar]
  12. T. Ahmed Jilani, S. Muhammad Aqil Burney, M-factor high order fuzzy time series forecasting for road accident data, Adv Soft Computer, 41, 246–254 (2007). [CrossRef] [Google Scholar]
  13. C. Chen Wang, Y. Hsien Tu, H. Lun Wong, The comparison between multivariate fuzzy time series and traditional time series modeling to forecasting China exports, 2009 4th Int Conf Innov Comput Inf Control ICICIC 2009, 1487–1490 (2009). [Google Scholar]
  14. D. Kartini, H. Rusdiani, A. Farmadi, Analisis Pengaruh Banyak Orde pada Metode Multivariate High-Order Fuzzy Time Series untuk Prediksi Duga Muka Air Waduk, J Edukasi Dan Penelit Inform, 5, 1-9 (2019). [Google Scholar]
  15. I M. Candra Satria, I K. Gede Sukarsa, K. Jayanegara, Peramalan Jumlah Wisatawan Australia Yang Berkunjung Ke Bali Menggunakan Multivariat Fuzzy Time Series. E-Jurnal Matematika, 4, 1-8, (2015). [CrossRef] [Google Scholar]
  16. L. Wei Lee, L. Hui Wang, S. Ming Chen, Senior Member, IEEE, Y. Ho Leu, Handling Forecasting Problems Based on Two-Factors High-Order Fuzzy Time Series, IEEE TRANSACTIONS ON FUZZY SYSTEMS, 14, 468–477 (2006). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.