Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 03009
Number of page(s) 6
Section Hydraulic Fracturing and Unconventional Hydrocarbons
DOI https://doi.org/10.1051/e3sconf/202020503009
Published online 18 November 2020
  1. H. Amor, J. Marigo, C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments,J. Mech. Phys. Solids 57, 8 (2009) [Google Scholar]
  2. G.S. Beavers, D.D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech. 30, 1 (1967) [Google Scholar]
  3. M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J. Hughes, C.M. Landis, A phase-field description of dynamic brittle fracture, Comput. Method Appl. M. 217 (2012) [Google Scholar]
  4. B. Bourdin, G.A. Francfort, J. Marigo, The variational approach to fracture, J. Elasticity 91 (2008) [Google Scholar]
  5. J. Choo, W. Sun, Cracking and damage from crystallization in pores: Coupled chemo-hydro-mechanics and phase-field modeling, Couput. Method Appl. M. 355 (2018) [Google Scholar]
  6. J. Choo, J.A. White, R.I. Borja, Hydromechanical modelling of unsaturated flow in double porosity media, Int. J. Geomech. 16, 6 (2016) [CrossRef] [Google Scholar]
  7. O. Coussy, Poromechanics (John Wiley & Sons, 2004) [Google Scholar]
  8. E. Detournay, A.H. Cheng, Fundamentals of poroelasticity, In Analysis and design methods (Elsevier, 1993) [Google Scholar]
  9. Y. Heider, B. Markert, A phase-field modelling approach of hydraulic fracture in saturated porous media, Mech. Res. Commun. 80 (2017) [Google Scholar]
  10. W.J. Layton, F. Schieweck, I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal. 40, 6 (2002) [Google Scholar]
  11. C. Liu, Y.N. Abousleiman, Shale dual-porosity dual-permeability poromechanical and chemical properties extracted from experimental pressure transmission tests, J. Eng. Mech. 143, 9 (2017) [Google Scholar]
  12. R. Ma, W. Sun, Computational thermomechanics for crystalline rock. Part ii: Chemo-damage-plasticity and healing in strongly anisotropic polycrystals, Comput. Method Appl. M. 369 (2020) [Google Scholar]
  13. S. Mauthe, C. Miehe, Hydraulic fracture in poro-hydro-elastic media, Mech. Res. Commun. 80 (2017) [Google Scholar]
  14. C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Method Appl. M. 199 (2010) [Google Scholar]
  15. A. Mikelic, W. Jäger, On the interface boundary condition of beavers, joseph, and saffman, SIAM J. Appl. Math 60, 4 (2000) [Google Scholar]
  16. D. Mumford, J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pur. Appl. Math 42, 5 (1989) [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Na, W. Sun, Computational thermo-hydro-mechanics for multiphase freezing and thawing porous media in the finite deformation range, Comput. Method Appl. M. 318 (2017) [Google Scholar]
  18. L.J. Pyrak-Nolte, N.G. Cook, D.D. Nolte, Fluid percolation through single fractures, Geophys. Res. Lett. 15, 11 (2017) [Google Scholar]
  19. A. Qinami, E.C. Bryant, W. Sun, M. Kaliske, Circumventing mesh bias by r-and h-adaptive techniques for variational eigenfracture, Int. J. Fract. 220, 2 (2019) [Google Scholar]
  20. P.G. Saffman, On the boundary condition at the surface of a porous medium, Stud. Appl. Math. 50, 2, (1971) [Google Scholar]
  21. S. Sisaveth, A. Al-Yaarubi, C.C. Pain, R.W. Zimmerman, A simple model for deviations from the cubic law for a fracture undergoing dilation or closure, In Thermo-Hydro-Mechanical Coupling in Fractured Rock (Springer, 2003) [Google Scholar]
  22. S. Stoter, P. Müller, L. Cicalese, M. Tuveri, D. Schilinger, T.J. Hughes, A diffuse interface method for the navier-stokes/darcy equations: Perfusion profile for a patient-specific human liver based on mri scans, Comput. Method Appl. M. 321 (2017) [Google Scholar]
  23. H.S. Suh, W. Sun, An open-source fenics implementation of a phase field fracture model for micropolar continua, Int. J. Multiscale Com. 17, 6 (2019) [Google Scholar]
  24. H.S. Suh, W. Sun, D.T. O’Connor, A phase field model for cohesive fracture in micropolar continua, Comput. Method Appl. M. 369 (2020) [Google Scholar]
  25. W. Sun, A unified method to predict diffuse and localized instabilities in sands, Geomech. Geoeng. 8, 2 (2013) [Google Scholar]
  26. W. Sun, A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain, Int. J. Numer. Methods Eng. 103, 11 (2015) [Google Scholar]
  27. W. Sun, T. Wong, Prediction of permeability and formation factor of sandstone with hybrid lattice Boltzmann / finite element simulation on microtomographic images, Int. J. Rock Mech. Min. 106 (2018) [Google Scholar]
  28. W. Sun, J.E. Andrade, J.W. Rudniki, Connecting microstructural attributes and permeability from 3d tomographic images of in situ shear-enhanced compaction bands using multiscale computations, Geophys. Res. Lett. 38, 10 (2011) [Google Scholar]
  29. W. Sun, J.T. Ostien, A.G. Salinger, A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain, Int. J. Numer. Anal. Met. 37, 16 (2013) [Google Scholar]
  30. K. Wang, W. Sun, Anisotropy of a tensorial bishop’s coefficient for wetted granular materials, J. Eng. Mech. 143, 3 (2017) [Google Scholar]
  31. K. Wang, W. Sun, A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning, Comput. Method Appl. M. 334 (2018) [Google Scholar]
  32. K. Wang, W. Sun, Meta-modeling game for deriving theory-consistent, microstructure-based traction-separation laws via deep reinforcement learning, Comput. Method Appl. M. 346 (2019a) [Google Scholar]
  33. K. Wang, W. Sun, An updated lagrangian lbm-dem-fem coupling model for dual-permeability fissured porous media with embedded discontinuities, Comput. Method Appl. M. 344 (2019b) [Google Scholar]
  34. O.C. Zienkiewicz, A. Chan, M. Pastor, B. Schrefler, T. Shiomi, Computational geomechanics (Wiley, 1999) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.