Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 06011
Number of page(s) 7
Section Minisymposium: Advances in Energy Geostructures Research (organized by Fleur Loveridge and Guillermo Narsilio)
DOI https://doi.org/10.1051/e3sconf/202020506011
Published online 18 November 2020
  1. Sterpi, D., Angelotti, A., Habibzadeh-Bigdarvish, O. & Jalili, D. J. Assessment of thermal behaviour of thermo-active diaphragm walls based on monitoring data. Rock Mech. Geotech. Eng., 10, 1145-1153 (2018). [CrossRef] [Google Scholar]
  2. Xia, C., Sun, M., Zhang, G., Xiao, S. & Zou, Y. Experimental study on geothermal heat exchangers buried in diaphragm walls. Energy Build., 52, 50-55 (2012). [Google Scholar]
  3. Brandl, H. Energy foundations and other thermo-active ground structures. Geotechnique, 56, 81-122 (2006). [CrossRef] [Google Scholar]
  4. Di Donna, A., Cecinato, F., Loveridge, F. & Barla, M. Energy performance of diaphragm walls used as heat exchangers. Proc. Inst. Civ. Eng. Geotech. Eng., 180, 232-245 (2017). [CrossRef] [Google Scholar]
  5. Bourne-Webb, P. J., Bodas Freitas, T. M. & da Costa Gonçalves, R. A. Thermal and mechanical aspects of the response of embedded retaining walls used as shallow geothermal heat exchangers. Energy Build., 125, 130-141 (2016). [Google Scholar]
  6. Sailer, E., Taborda, D. M. G., Zdravković, L. & Potts, D. M. Fundamentals of the coupled thermo-hydro-mechanical behaviour of thermo-active retaining walls. Comp. Geotech., 109, 189-203 (2019). [CrossRef] [Google Scholar]
  7. Potts, D. M. & Zdravković, L. Finite Element Analysis in Geotechnical Engineering: Theory. London, Thomas Telford, (1999) [CrossRef] [Google Scholar]
  8. Cui, W., Potts, D. M., Zdravković, L., Gawecka, K. A. & Taborda, D. M. G. An alternative coupled thermo-hydro-mechanical finite element formulation for fully saturated soils. Comp. Geotech., 94, 22-30 (2018). [CrossRef] [Google Scholar]
  9. Gawecka, K. A., Taborda, D. M. G., Potts, D. M., Sailer, E., Cui, W. & Zdravković, L. Finite element modelling of heat transfer in ground source energy systems with heat exchanger pipes. ASCE Int. J. Geomech., 20 (5), 1-14, (2019). [Google Scholar]
  10. Gawecka, K. A., Potts, D. M., Cui, W., Taborda, D. M. G. & Zdravković, L. coupled thermo-hydro-mechanical finite element formulation of one-dimensional beam elements for three-dimensional analysis. Comp. Geotech., 104, 29-41 (2018). [CrossRef] [Google Scholar]
  11. Makasis, N., Narislio G.A., Bidarmaghz, A., Johnston, I.W., Zhong, Y. The importance of boundary conditions on the modelling of energy retaining walls. Comp. Geotech., 120, 1-13 (2020). [CrossRef] [Google Scholar]
  12. Taborda, D. M. G., Potts, D. M. & Zdravković, L. On the assessment of energy dissipated through hysteresis in finite element analysis. Comp. Geotech., 71, 180-194 (2016). [CrossRef] [Google Scholar]
  13. Gawecka, K. A., Taborda, D. M. G., Potts, D. M., Cui, W., Zdravković, L. & Haji Kasri, M. S. Numerical modelling of thermo-active piles in London Clay. Proc. Inst. Civ. Eng. Geotech. Eng., 170, 201-219 (2017). [CrossRef] [Google Scholar]
  14. Cui, W., Gawecka, K. A., Potts, D. M., Taborda, D. M. G. & Zdravković, L. Numerical analysis of coupled thermo-hydraulic problems in geotechnical engineering. Geomech. Energy Environ., 6, 22-34 (2016). [CrossRef] [Google Scholar]
  15. Cui, W., Gawecka, K. A., Potts, D. M., Taborda, D. M. G. & Zdravković, L. A Petrov-Galerkin finite element method for 2D transient and steady state highly advective flows in porous media. Comp. Geotech., 100, 158-173 (2018). [CrossRef] [Google Scholar]
  16. Cui, W., Gawecka, K. A., Taborda, D. M. G., Potts, D. M. & Zdravković, L. Time-step constraints for finite element analysis of two-dimensional transient heat diffusion. Comp. Geotech., 108, 1-6 (2019). [CrossRef] [Google Scholar]
  17. Cui, W., Gawecka, K. A., Taborda, D. M. G., Potts, D. M. & Zdravković, L. Time-step constraints in transient coupled finite element analysis. Int. J. Numer. Meth. Eng., 106, 953-971 (2016). [CrossRef] [Google Scholar]
  18. Cui, W., Potts, D. M., Zdravković, L., Gawecka, K. A., Taborda, D. M. G. & Tsiampousi, A. A coupled thermo-hydro-mechanical finite element formulation for curved beams in two-dimensions. Comp. Geotech., 103, 103-114 (2018). [CrossRef] [Google Scholar]
  19. Sailer, E. Numerical modelling of thermo-active retaining walls. PhD thesis. Imperial College London (2020). [Google Scholar]
  20. Angelotti, A. & Sterpi, D. On the performance of energy walls by monitoring assessment and numerical modelling: a case in Italy Environ.Geotech., 1-8 (2018). [Google Scholar]
  21. Sterpi, D., Tomaselli, G. & Angelotti, A. Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling. Renewable Energy, (2018). [Google Scholar]
  22. Sailer, E., Taborda, D. M. G., Zdravkovic, L. & Potts, D. M. Proc. Inst. Civ. Eng. Geotech. Eng, (ahead of print), (2020). [Google Scholar]
  23. Sterpi, D., Coletto, A. & Mauri, L. Investigation on the behaviour of a thermo-active diaphragm wall by thermo-mechanical analyses Geomech. Energy Environ., 9, 1-20 (2017). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.