Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 10006
Number of page(s) 5
Section Minisymposium: Shale and Clay Behavior for Energy Production and Nuclear Waste Disposal (organized by Alessio Ferrari and Russell T. Ewy)
Published online 18 November 2020
  1. SKB. Report of the Site project I-III (2011). [Google Scholar]
  2. A. Gens, M. Sánchez, L. Guimaraes, E. Alonso, A. Lloret, S. Olivella, M.V. Villar, F. Huertas. 2009. A full scale in situ heating test for high level nuclear waste disposal. Observations, analysis and interpretation. Géotechnique, 59(4): 377-399. (2009) [CrossRef] [Google Scholar]
  3. J-S. Kim, S-K. Kwon, M. Sanchez, G-Ch, Cho. Geological storage of high-level nuclear waste. KSCE Journal of Civil Engineering, 15(4): 721-737. (2011) [CrossRef] [Google Scholar]
  4. A. Lloret, M.V. Villar, M. Sánchez, A. Gens, X. Pintado, E. Alonso. Mechanical behaviour of heavily compacted bentonite under high suction changes. Géotechnique; 53(1): 27-40. (2003) [CrossRef] [Google Scholar]
  5. P. Delage, T-T. Le, A-M. Tang, Y-J. Cui, X-L. Li. Suction effects in deep Boom clay block samples. Géotechnique. 57 (2), 239-244. (2007) [CrossRef] [Google Scholar]
  6. M. Villar, M. Sánchez, A. Gens. Behaviour of a bentonite barrier in the laboratory: Experimental results up to 8 years and numerical simulation. Phys. and Chem. of the Earth 33, S476-S485 (2008). [CrossRef] [Google Scholar]
  7. H. Thomas, P. Cleall, J. Dixon, and H. Mitchell. The coupled thermal – hydraulic - mechanical behaviour of a large scale in-situ heating experiment. Géotechnique, 59(4), 401-413 (2009). [CrossRef] [Google Scholar]
  8. M. Sánchez, A. Gens, L. Guimarães. Thermal–hydraulic–mechanical (THM) behaviour of a large-scale in situ heating experiment during cooling and dismantling. Can. Geotech. J., 49(10), 1169–1195. (2012). [CrossRef] [Google Scholar]
  9. EBS report. Project deliverable 3.5-3. 2014. EC Euroatom 7. (2012). [Google Scholar]
  10. R. Shaw. The Fate of Repository Gases (FORGE) project. Geological Society, London, Special Publications, 415, 1-7, 23 (2015). [CrossRef] [Google Scholar]
  11. Project: Impact of coupled gas migration and thermo-hydro-mechanical processes on the performance of repositories for high level nuclear waste, Nuclear Energy University Program (NEUP), Department of Energy (DOE). Retrieved from [Google Scholar]
  12. M. Ali-Falak, M. Sanchez, E. Romero-Morales. Gas Migration Phenomena Through Interfaces in Engineering Barrier Systems. Contribution ID: 33157. 2020 ANS Virtual Winter Meeting. November 16–19 (2020). [Google Scholar]
  13. B. Zhou, M. Sanchez. Effect of Heating and Drying on Clay-Barrier Gas-Permeability. Winter ANS Meeting. Contribution ID: 33160 2020 ANS Virtual Winter Meeting. November 16–19 (2020). [Google Scholar]
  14. J.F. Liu, F. Skoczylas, C. Davy. Sealing efficiency of an argillite-bentonite plug subjected to gas pressure, in the context of deep underground radioactive waste storage. FORGE Report D3-08; D3-24, D3-30 and D3-35 (2013). [Google Scholar]
  15. R. Pusch, H. Hökmark, L. Börgesson. Outline of models of water and gas flow through smectite clay buffers. SKB Technical Report 87-10, Stockholm, Sweden (1987). [Google Scholar]
  16. S. Horseman, J. Harrington, P. Sellin. Water and gas flow in Mx80 bentonite buffer clay. Materials Research Society, 807, 715-720 (2004). [CrossRef] [Google Scholar]
  17. ASTM D4318. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils [Google Scholar]
  18. ASTM D698. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort [Google Scholar]
  19. G. El Mountassir, M. Sanchez, E. Romero. An experimental study on the compaction and collapsible behaviour of a flood defence embankment fill. Engineering Geology. 179, 132-145 (2014). [Google Scholar]
  20. Decagon Devices, Inc. Dewpoint Potentiometer for models WP4 and WP4-T. Operator’s Manual, Version 5. (2007). Retrieved from [Google Scholar]
  21. ASTM D5298-10. Standard Test Method For Measurement Of Soil Potential (Suction) Using Filter Paper [Google Scholar]
  22. M.V. Villar, V. Gutierrez-Rodrigo, P.L. Martin, F.J. Romero, J.M. Barcala. Ciemat Report 1301 (2013). [Google Scholar]
  23. C. Galle, K. Tanai. Evaluation of gas transport properties of backfill materials for waste disposal: H2 migration experiments in compacted Fo-Ca Clay Clays Clay Minerals. 46, 498-508 (1998). [CrossRef] [Google Scholar]
  24. J.F. Liu, F. Skoczylas, J. Talandier. Gas permeability of a compacted bentonite–sand mixture: coupled effects of water content, dry density, and confining pressure. Can. Geotech. J., 52(8), 1159 (2015). [CrossRef] [Google Scholar]
  25. T. Wei, D. Hu, H. Zhou, J. Lu, T. Lü. Influences of degree of saturation and stress cycle on gas permeability of unsaturated compacted Gaomiaozi bentonite. Eng. Geo. 254, 54-62 (2019). [CrossRef] [Google Scholar]
  26. J. Joseph, G. Kuntikana, D.N. Singh. Investigations on gas permeability in porous media. Jnl. of Nat. Gas Sci. and Eng., 64, 81-92 (2019). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.