Open Access
Issue
E3S Web Conf.
Volume 227, 2021
Annual International Scientific Conference on Geoinformatics – GI 2021: “Supporting sustainable development by GIST”
Article Number 02005
Number of page(s) 11
Section GIS for Management in the Field of Environmental Protection
DOI https://doi.org/10.1051/e3sconf/202122702005
Published online 06 January 2021
  1. N. V. Aladin. W. T. W. Potts. Changes in the Aral Sea ecosystem during the period 1960-1990. Hydrobiologia. (1992) [Google Scholar]
  2. A. Bannari. D. Morin. F. Bonn. A.R. Huete. A review of vegetation indices. Remote Sensing Reviews, 13(1-2), 95-120. (1995) [CrossRef] [Google Scholar]
  3. A. Burton. Northern Aral Sea Filling up Fast. Frontiers in Ecology and the Environment, Vol. 4, No. 5. http://www.jstor.org/stable/3868774 (2006) [PubMed] [Google Scholar]
  4. CAWATER info. The Aral Sea Basin. Available online from http://www.cawaterinfo.net/aral/index_e.htm/Accessed 13 August (2018) [Google Scholar]
  5. E.J. Crighton. Barwin I. Small R. Upshur. What have we learned? A review of the literature on children’s health and the environment in the Aral Sea area. Int J Public Health (2011) [Google Scholar]
  6. S. I. Deliry. Z. Y. Avdan. N. T. Do. U Avdan. Assessment of human-induced environmental disaster in the Aral Sea using Landsat satellite images. Environmental Earth Sciences. (2020) [Google Scholar]
  7. A. Diouf. E.F. Lambin. Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal. Journal of Arid Environments, 48(2), (2001) [Google Scholar]
  8. D. V. Fedorov, L. M. G. Fonseca, C. Kenney, B. S. Manjunath. Automatic registration and mosaicking system for remotely sensed imagery. In Image and Signal Processing for Remote Sensing VIII Vol. 4885. (2003) [Google Scholar]
  9. B. Gaybullaev, S.C Chen, D. Gaybullaev. Changes in water volume of the Aral Sea after 1960. Appl. Water. Sci. 2 (4). https://doi.org/10.1007/s13201-0120048-z (2012) [Google Scholar]
  10. M. H. Glantz Aral Sea Basin: A Sea Dies, a Sea Also Rises. Ambio, Vol. 36, No. 4 http://www.jstor.org/stable/4315834 (2007) [Google Scholar]
  11. L. Gomes and A. Gillette A comparison of characteristics of aerosol from dust storms in Central Asia with soil-derived dust from other regions. Atmospheric Environment Vol. 27A, No. 16. (1992) [Google Scholar]
  12. B. Grobety et al. Airborne particular in the urban Environment. Elements. Vol. No 6. (2010) [CrossRef] [Google Scholar]
  13. M. Groll et al. Long term analysis of Aeolian dust in Central Asia – Results from the CALTER-Project. In: Marburg International Dust & Sand Storm (DSS) Symposium “DSS and Desertification”. (2009) [Google Scholar]
  14. M. Groll. Chr. Opp. I. Aslanov. Spatial and Temporal distribution of the dust deposition in Central Asia – results from a long term monitoring program. Aeolian Research, Elsevier, DOI: 10.1016/j.aeolia.2012.08.002 (2012) [Google Scholar]
  15. M. Groll. Ch. Opp. G. Issanova. N. Vereshagina, O. Semenov. Physical and Chemical Characterization of Dust Deposited in the Turan Lowland (Central Asia). Central Asian Dust Con. Vol. 99. DOI: https://doi.org/10.1051/e3sconf/20199903005 (2009) [Google Scholar]
  16. T. Higginbottom., E Symeonakis. Assessing land degradation and desertification using vegetation index data: Current frameworks and future directions. Remote Sensing, 6(10), (2014) [Google Scholar]
  17. P. Hostert. A. Roder. T. Jarmer. T. Udelhoven. J. Hill. The potential of remote sensing and GIS for desertification monitoring and assessment. Annals of Arid Zone, 40(2), (2001) [Google Scholar]
  18. X. Huang et al. Dust deposition in the Aral Sea: implication for the changes in atmospheric circulation in central Asia during the past 2000 years. In: Quaternary Science reviews. (2011) [Google Scholar]
  19. A. R. Huete, A. R. A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3) (1988) [Google Scholar]
  20. R. Indoitu, L. Orlovsky, N. Orlovsky. Dust storms in Central Asia: Spatial and temporal variations. Journal of Arid Environments, 85 (2012) [Google Scholar]
  21. R. R. Irish, J. L. Barker, S. N. Goward, T Arvidson,. Characterization of the Landsat 7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogrammetric engineering & remote sensing, 72(10) (2006) [CrossRef] [Google Scholar]
  22. K. Ivushkin, H. Bartholomeus, A. K. Bregt, A. Pulatov. Satellite thermography for soil salinity assessment of cropped areas in Uzbekistan. Land degradation & development, 28(3) (2017) [CrossRef] [PubMed] [Google Scholar]
  23. N. G. Kardoulas, A. C. Bird, A. I. Lawan, Geometric correction of SPOT and Landsat imagery: a comparison of map-and GPS-derived control points. Photogrammetric Engineering and Remote Sensing, 62(10) (1996) [Google Scholar]
  24. K. L. Kiessling Conference on the Aral Sea: Women, Children, Health and Environment. Ambio, Vol. 27, http://www.jstor.org/stable/4314791 (1998) [Google Scholar]
  25. S. Liang, H. Fang, M. Chen. Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods. IEEE Transactions on geoscience and remote sensing, 39(11), (2001) [Google Scholar]
  26. P. N. Makkaveev, V. V. Gordeev, P. O. Zav’yalov, A. A. Polukhin, P. V. Khlebopashev A. I. Kochenkova. Hydrochemical characteristics of the Aral Sea in 2012–2013. Water resources, 45(2), (2018) [CrossRef] [Google Scholar]
  27. M. Masoudi, P. Jokar, B. Pradhan. A new approach for land degradation and desertification assessment using geospatial techniques. Natural Hazards and Earth System Sciences, 18(4), (2018) [Google Scholar]
  28. P. Micklin. The future Aral Sea: hope and despair. Environmental Earth Sciences, 75(9), (2016) [Google Scholar]
  29. S. E. Nicholson, C. J. Tucker, M. B Ba. Desertification, drought, and surface vegetation: An example from the West African Sahel. Bulletin of the American Meteorological Society, 79(5) (1998) [Google Scholar]
  30. Chr Opp. Desertification in Uzbekistan. Geographische Rundschau International Edition Vol. 1, 2: (2005) [Google Scholar]
  31. Chr. Opp, Vom Aralsee zur Aralkum: Ursachen, Wirkungen und Folgen des Aralseesyndroms. Asien (Reihe Planet Erde). (2007) [Google Scholar]
  32. Chr. Opp, M. Groll, I. Aslanov, T. Lotz, N. Vereshagina. Aeolian dust deposition in the Southern Aral Sea region (Uzbekistan) ground base monitoring results of LUCA project. Quaternary International 429, (2017) [Google Scholar]
  33. Ch. Opp, M. Groll, O. Semenov, N. Vereshagina, A. Khamzina. Impact of the Aral Sea Syndrome – the Aralkum as a Man-Made Dust Source. E3S Web of Conferences 99 https://doi.org/10.1051/e3sconf/20199903003 (2019) [Google Scholar]
  34. L. Orlovsky, G. Tolkacheva, N. Orlovsky, B. Mamedov. Dust storms as a factor of atmospheric air pollution in the Aral Sea basin. WIT Transactions on Ecology and the Environment, 74. (2004). [Google Scholar]
  35. A. Platonov, A. Karimov, S. Prathapar. Using satellite images for multi-annual soil salinity mapping in the irrigated areas of Syrdarya province. Journal of Arid Land Studies, 25-3 (2015) [Google Scholar]
  36. S Prince. Mapping desertification in southern Africa. In: Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth’s Surface (Gutman G, Janetos A, Justice CO, Moran EF, Mustard JF, Rindfuss RR, Skole D, Turner II BL, eds), pp. 163-184. Kluwer, Dordrecht, NL. (2004). [Google Scholar]
  37. S. D. Prince, C. O. Justice. Coarse resolution remote sensing of the Sahelian environment. Ecology and Society, 13(7) (1991) [Google Scholar]
  38. R. Richter. A fast atmospheric correction algorithm applied to Landsat TM images. Title Remote Sensing, 11(1) (1990) [Google Scholar]
  39. K. Schepanski. Transport of mineral dust and its impact on climate. Geosciences 8, 151 doi: 10.3390/geosciences8050151 (2018) [Google Scholar]
  40. I. V. Severskiy Water-Related Problems of Central Asia: Some Results of the (GIWA) International Water Assessment Program. Ambio, Vol. 33, No. 1/2, Transboundary Issues in Shared Waters http://www.jstor.org/stable/4315455 (2004) [Google Scholar]
  41. A. S. Walker, C. J. Robinove, Annotated bibliography of remote sensing methods for monitoring desertification (No. 851). US Geological Survey. (1981) [Google Scholar]
  42. X. Wang. Y. Chen, Z. Li, G. Fang, F. Wang, H. Liu, The impact of climate change and human activities on the Aral Sea Basin over the past 50 years. Atmospheric Research, 245, (2020) [Google Scholar]
  43. G. F. S. Wiggs, S. L. O’hara, Wegerdt, J. Van Der Meer, I. Small, R. Hubbard. The Dynamics and Characteristics of Aeolian Dust in Dryland Central Asia: Possible Impacts on Human Exposure and Respiratory Health in the Aral Sea Basin. The Geographical Journal, Vol. 169, No. 2 (2003) http://www.jstor.org/stable/3451395. [Google Scholar]
  44. T. Wu, S. Sang, S. Wang, Y. Yang, M. Li, Remote sensing assessment and spatiotemporal variations analysis of ecological carrying capacity in the Aral Sea Basin. Science of The Total Environment, (2020). [Google Scholar]
  45. I. Ying et al. Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan. Atmospheric Environment 40 (2006) [Google Scholar]
  46. H. Yongxiang et al. Dust storm in Asia continent and its bio-environmental effects in the North Pacific: A case study of the strongest dust event in April, 2001 in central Asia. Chinese Science Bulletin Vol. 51 (2006) [Google Scholar]
  47. X. Yang, N. Wang, J. He, T. Hua, Y. Qie. Changes in area and water volume of the Aral Sea in the arid Central Asia over the period of 1960–2018 and their causes. CATENA, 191 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.