Open Access
Issue
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 02034
Number of page(s) 8
Section BFS2020-Biotechnology and Food Science
DOI https://doi.org/10.1051/e3sconf/202123302034
Published online 27 January 2021
  1. Carrizzo, A., et al., Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food & Chemical Toxicology, 2013. 61: p. 215-226. [CrossRef] [Google Scholar]
  2. Alkhalaf and Moussa, Resveratrol-induced growth inhibition in MDA-MB-231 breast cancer cells is associated with mitogen-activated protein kinase signaling and protein translation. European Journal of Cancer Prevention, 2007. 16(4): p. 334-341. [CrossRef] [Google Scholar]
  3. Atten, M.J., et al., Resveratrol regulates cellular PKC α and δ to inhibit growth and induce apoptosis in gastric cancer cells. Investigational New Drugs, 2005. 23(2): p. 111-119. [CrossRef] [PubMed] [Google Scholar]
  4. Castino, N.F.T.G.N.C.F.R. and C. Isidoro, Resveratrol induces cell death in colorectal cancer cells by a novel pathway involving lysosomal cathepsin D. Carcinogenesis, 2007. 28(5): p. 922-931. [PubMed] [Google Scholar]
  5. Holian, O., Resveratrol regulates cellular PKC α and δ to inhibit growth and induce apoptosis in gastric cancer cells. Investigational New Drugs. 23(2): p. 111-119. [CrossRef] [PubMed] [Google Scholar]
  6. Holian, O., Resveratrol regulates cellular PKC α and δ to inhibit growth and induce apoptosis in gastric cancer cells. Investigational New Drugs, 2005. 23(2): p. 111-119. [CrossRef] [PubMed] [Google Scholar]
  7. Baile, C.A., et al., Effect of resveratrol on fat mobilization. Annals of the New York Academy of Sciences, 2011. 1215: p. p.40-47. [CrossRef] [PubMed] [Google Scholar]
  8. Wong, R.H.X., et al., Chronic resveratrol consumption improves brachial flow-mediated dilatation in healthy obese adults. Journal of Hypertension, 2013. 31(9): p. 1819-1827. [CrossRef] [PubMed] [Google Scholar]
  9. Rivera, L., et al., Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. 2009. 77(6): p. 1053-1063. [Google Scholar]
  10. Szkudelski, T. and K. Szkudelska, Resveratrol and diabetes: from animal to human studies. Biochimica Et Biophysica Acta, 2015. 1852(6): p. 1145-1154. [CrossRef] [PubMed] [Google Scholar]
  11. Palsamy, P. and S. Subramanian, Resveratrol, a natural phytoalexin, normalizes hyperglycemia in streptozotocin-nicotinamide induced experimental diabetic rats. Biomedicine & Pharmacotherapy, 2008. 62(9): p. 0-605. [CrossRef] [Google Scholar]
  12. Pasinetti, G.M., et al., Neuroprotective and metabolic effects of resveratrol: Therapeutic implications for Huntington\”s disease and other neurodegenerative disorders. 2011. 232(1): p. 1-6. [Google Scholar]
  13. Berman, A.Y., et al., The therapeutic potential of resveratrol: a review of clinical trials. Npj Precision Oncology, 2017. 1(1): p. 35. [CrossRef] [PubMed] [Google Scholar]
  14. Zhang, F., J. Liu, and J.S. Shi, Anti-inflammatory activities of resveratrol in the brain: Role of resveratrol in microglial activation. European Journal of Pharmacology, 2010. 636(1-3): p. 1-7. [CrossRef] [PubMed] [Google Scholar]
  15. Bradamante, S., L. Barenghi, and A. Villa, Cardiovascular Protective Effects of Resveratrol. Cardiovascular Therapeutics, 2004. 22(3): p. 169-188. [Google Scholar]
  16. Samarjit Das, D.K.D., Resveratrol: A Therapeutic Promise for Cardiovascular Diseases. Recent Patents on Cardiovascular Drug Discovery, 2007. 2(2): p. p.133-138. [CrossRef] [PubMed] [Google Scholar]
  17. Baur, J.A. and D.A. Sinclair, Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews Drug Discovery, 2006. 5(6): p. 493-506. [CrossRef] [PubMed] [Google Scholar]
  18. Vestergaard, M. and H. Ingmer, Antibacterial and Antifungal Properties of Resveratrol. International Journal of Antimicrobial Agents. [Google Scholar]
  19. T, R., et al., Preventive role of Resveratrol against inflammatory cytokines and related diseases. Curr Pharm Des., 2019. [Google Scholar]
  20. Singh, A.P., et al., Health benefits of resveratrol: Evidence from clinical studies. Medicinal Research Reviews, 2019. [Google Scholar]
  21. Zhang, Y., et al., Insight into the assembly of root-associated microbiome in the medicinal plant Polygonum cuspidatum. Industrial Crops and Products, 2020. 145. [Google Scholar]
  22. Wang, C., et al., Efficient Enzyme-Assisted Extraction and Conversion of Polydatin to Resveratrol From Polygonum cuspidatum Using Thermostable Cellulase and Immobilized β-Glucosidase. Frontiers in Microbiology, 2019. [Google Scholar]
  23. Uhoraningoga, A., et al., The Statistical Optimisation of Recombinant beta-glucosidase Production through a Two-Stage, Multi-Model, Design of Experiments Approach. Bioengineering (Basel), 2019. 6(3). [Google Scholar]
  24. Zhang, D.-Y., et al., Fabrication of three-dimensional porous cellulose microsphere bioreactor for biotransformation of polydatin to resveratrol from Polygonum cuspidatum Siebold & Zucc. Industrial Crops and Products, 2020. 144. [Google Scholar]
  25. Guisan, J.M., et al., The Science of Enzyme Immobilization. Methods Mol Biol, 2020. 2100: p. 1-26. [Google Scholar]
  26. Bilal, M., et al., Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design. Critical Reviews in Biotechnology, 2019. [Google Scholar]
  27. Sannino, F., et al., Covalent Immobilization of beta-Glucosidase into Mesoporous Silica Nanoparticles from Anhydrous Acetone Enhances Its Catalytic Performance. Nanomaterials (Basel), 2020. 10(1). [Google Scholar]
  28. Tu, M., et al., Immobilization of β-glucosidase on Eupergit C for Lignocellulose Hydrolysis. 2006. 28(3): p. 151-156. [Google Scholar]
  29. Yue, W., et al., In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. 2009. 100(14): p. 3459-3464. [Google Scholar]
  30. Bilal, M. and H.M.N. Iqbal, Naturally-derived biopolymers: Potential platforms for enzyme immobilization. Int J Biol Macromol, 2019. 130: p. 462-482. [CrossRef] [PubMed] [Google Scholar]
  31. Chen, H., et al., The Effect of Glutaraldehyde Cross-Linking on the Enzyme Activity of Immobilized &beta-Galactosidase on Chitosan Bead. Advance Journal of Food Science and Technology, 2013. 5(7): p. 932-935. [CrossRef] [Google Scholar]
  32. Adriano, W.S., et al., Stabilization of penicillin G acylase by immobilization on glutaraldehyde-activated chitosan. Brazilian Journal of Chemical Engineering, 2005. 22: p. 529-538. [CrossRef] [Google Scholar]
  33. Migneault, I., et al., Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. 2004. 37(5): p. 798-802. [Google Scholar]
  34. Chui, W.K. and L.S.C. Wan, Prolonged retention of cross-linked trypsin in calcium alginate microspheres. Journal of Microencapsulation, 1997. 14(1): p. 51-61. [CrossRef] [PubMed] [Google Scholar]
  35. Broun, G.B., [20] Chemically aggregated enzymes. Methods in Enzymology, 1976. 44: p. 263-280. [CrossRef] [PubMed] [Google Scholar]
  36. Lopez-Gallego, F., et al., Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J Biotechnol, 2005. 119(1): p. 70-5. [CrossRef] [PubMed] [Google Scholar]
  37. DiCosimo, R., et al., Industrial use of immobilized enzymes. Chem Soc Rev, 2013. 42(15): p. 6437-74. [CrossRef] [PubMed] [Google Scholar]
  38. Jiang, D.S., et al., Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochemical Engineering Journal, 2005. 25(1): p. 15-23. [Google Scholar]
  39. Fernández-Lafuente, R., C.M. Rosell, and J.M. Guisán, The presence of methanol exerts a strong and complex modulation of the synthesis of different antibiotics by immobilized Penicillin G acylase. Enzyme & Microbial Technology, 1998. 23(5): p. 305-310. [CrossRef] [Google Scholar]
  40. Kumari, A., et al., Enzymatic transesterification of Jatropha oil. Biotechnology for Biofuels, 2009. 2(1): p. 1. [CrossRef] [PubMed] [Google Scholar]
  41. Park, T.G. and A.S. Hoffman, Immobilization of Arthrobacter simplex in a thermally reversible hydrogel: Effect of temperature cycling on steroid conversion. Biotechnology & Bioengineering, 1990. 35(2): p. 152-159. [CrossRef] [Google Scholar]
  42. Gianfreda, L. and J.-M. Bollag, Effect of Soils on the Behavior of Immobilized Enzymes. Soil Science Society of America Journal, 1994. 58(6): p. 1672. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.