Open Access
Issue
E3S Web Conf.
Volume 234, 2021
The International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES2020)
Article Number 00107
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202123400107
Published online 02 February 2021
  1. R. Ciccoritti et al., “Hydrothermal grain pre-processing and ultra-fine milling for the production of durum wheat flour fractions with high nutritional value,” Food Sci. Technol. Int., Vol. 24, no. 3, 2018, doi: 10.1177/1082013217745199 [Google Scholar]
  2. Y.F. Li, Y. Wu, N. Hernandez-Espinosa, and R.J. Peña, “Heat and drought stress on durum wheat: Responses of genotypes, yield, and quality parameters,” J. Cereal Sci., Vol. 57, no. 3, 2013, doi: 10.1016/j.jcs.2013.01.005 [Google Scholar]
  3. H. Liu, D.R. Bruce, M. Sissons, A.J. Able, and J.A. Able, “Genotype-dependent changes in the phenolic content of durum under water-deficit stress,” Cereal Chem., Vol. 95, no. 1, 2018, doi: 10.1002/cche.10007 [Google Scholar]
  4. P. Nazeri, A. H. S. Rad, S.A. ValadAbadi, M. Mirakhori, and E.H. Masoule, “Effect of sowing dates and late season water deficit stress on quantitative and qualitative traits of canola cultivars,” Outlook Agric., Vol. 47, no. 4, 2018, doi: 10.1177/0030727018793658 [Google Scholar]
  5. M. A. J. Parry, P.J. Madgwick, J. F. C. Carvalho, and P.J. Andralojc, “Prospects for increasing photosynthesis by overcoming the limitations of Rubisco,” in Journal of Agricultural Science, 2007, Vol. 145, no. 1, doi: 10.1017/S0021859606006666 [Google Scholar]
  6. M.D. Edgerton, “Increasing crop productivity to meet global needs for feed, food, and fuel,” Plant Physiology, Vol. 149, no. 1. 2009, doi: 10.1104/pp.108.130195 [Google Scholar]
  7. E. Nemeskéri, A. Neményi, A. Bocs, Z. Pék, and L. Helyes, “Physiological factors and their relationship with the productivity of processing tomato under different water supplies,” Water (Switzerland), Vol. 11, no. 3, 2019, doi: 10.3390/w11030586 [Google Scholar]
  8. W.F. Abobatta, “Plant Responses and Tolerance to Combined Salt and Drought Stress,” 2020 [Google Scholar]
  9. A. Guaâdaoui, F. Bouhtit, M. Cherfi, and A. Hamal, “The Preventive Approach of Biocompounactives ( 3 ): A Review in Recent Advances in Cerealsand some Animal-based foods,” Int. J. Nutr. Food Sci., Vol. 4, no. 2, pp. 189-207, 2015, doi: 10.11648/j.ijnfs.20150402.21 [CrossRef] [Google Scholar]
  10. M. Zaharieva, E. Gaulin, M. Havaux, E. Acevedo, and P. Monneveux, “Drought and heat responses in the wild wheat relative Aegilops geniculata roth: Potential interest for wheat improvement,” Crop Sci., Vol. 41, no. 4, 2001, doi: 10.2135/cropsci2001.4141321x [Google Scholar]
  11. M.M. Maqbool, A. Ali, T. ul Haq, M.N. Majeed, and D.J. Lee, “Response of Spring Wheat (Triticum aestivum L.) to Induced Water Stress at Critical Growth Stages,” Sarhad J. Agric., Vol. 31, no. 1, 2015 [Google Scholar]
  12. A. Grover, A. Kapoor, D. Kumar, H.E. Shashidhar, and S. Hittalmani, “Genetic Improvement for Abiotic Stress Responses,” in Plant Breeding, 2004 [Google Scholar]
  13. D.W. Lawlor and G. Cornic, “Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants,” Plant, Cell Environ., Vol. 25, no. 2, 2002, doi: 10.1046/j.0016-8025.2001.00814.x [Google Scholar]
  14. Z. Wang et al., “Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves,” Biol. Open, Vol. 7, no. 11, 2018, doi: 10.1242/bio.035279 [Google Scholar]
  15. A. Yokota, S. Kawasaki, M. Iwano, C. Nakamura, C. Miyake, and K. Akashi, “Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon,” Ann. Bot., Vol. 89, no. SPEC. ISS., 2002, doi: 10.1093/aob/mcf074 [Google Scholar]
  16. F. Khalil, S. Rauf, P. Monneveux, S. Anwar, and Z. Iqbal, “Genetic analysis of proline concentration under osmotic stress in sunflower (Helianthus annuus L.),” Breed. Sci., Vol. 66, no. 4, 2016, doi: 10.1270/jsbbs.15068 [Google Scholar]
  17. M. Tayyab et al., “Bioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: A review,” Applied Ecology and Environmental Research, Vol. 16, no. 1. 2018, doi: 10.15666/aeer/1601_225249 [Google Scholar]
  18. F. Khalil, X. Naiyan, M. Tayyab, and C. Pinghua, “Screening of ems-induced drought-tolerant sugarcane mutants employing physiological, molecular and enzymatic approaches,” Agronomy, Vol. 8, no. 10, pp. 1-13, 2018, doi: 10.3390/agronomy8100226 [CrossRef] [Google Scholar]
  19. P. Suprasanna, S.J. Mirajkar, V.Y. Patade, and S.M. Jain, “17. Induced mutagenesis for improving plant abiotic stress tolerance,” in Mutagenesis: exploring genetic diversity of crops, 2014 [Google Scholar]
  20. E. Meryem et al., “Characterization of New Allelic Variation for Glutenin in EMS—Mutant Durum Wheat Population (Triticum turgidum L. subsp. durum (Desf.)),” J. Life Sci., Vol. 8, pp. 880-888, 2014, doi: 10.17265/1934-7391/2014.11.004 [Google Scholar]
  21. J. Jankowicz-Cieslak and B.J. Till, “Chemical Mutagenesis of Seed and Vegetatively Propagated Plants Using EMS,” Curr. Protoc. Plant Biol., Vol. 1, no. 4, 2016, doi: 10.1002/cppb.20040 [Google Scholar]
  22. A. Amsal and Ishak-ishak, “Drought Tolerance and Evaluation of Genetic Changes in Rice Mutant Lines,” Am. J. Appl. Sci., Vol. 15, no. 1, 2018, doi: 10.3844/ajassp.2018.1.9 [CrossRef] [Google Scholar]
  23. M.H. Paul, C. Planchton, and R. Ecochard, “Etude des relations entre le développement foliaire, le cycle de développement et la productivité chez le soja,” Ann. Amélio. Plant., Vol. 29, pp. 479-492, 1979 [Google Scholar]
  24. J.L. Araus, T. Amaro, J. Casadesús, A. Asbati, and M.M. Nachit, “Relationships between ash content, carbon isotope discrimination and yield in durum wheat,” Aust. J. Plant Physiol., Vol. 25, no. 7, 1998, doi: 10.1071/PP98071 [Google Scholar]
  25. Zeghida A., R. Amrani, F. Djennadi, R. Ameroun, A.A. Khldoun, and M. Belloucif, “Etude de la variabilité de réponse des plantules de blé dur (Triticum durum Desf) à la salinité. Céréaliculture,” ITGC, no. 42, p. 5p, 2004 [Google Scholar]
  26. J.M. Clarke and T.N. McCaig, “Excised-Leaf Water Retention Capability as an Indicator of Drought Resistance of Triticum Genotypes,” Can. J. Plant Sci., Vol. 62, no. 3, pp. 571-587, 1982, doi: 10.4141/cjps82-086 [Google Scholar]
  27. M. Samira, H. Hichem, F. Boughalleb, and D. Mounir, “Effet de l’interaction lumiere-salinite sur l’activite du photosysteme ii des feuilles excisees de maïs,” African Crop Sci. J., Vol. 23, no. 4, 2015, doi: 10.4314/acsj.v23i4.4 [Google Scholar]
  28. F. Morales et al., “Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement,” Plants, Vol. 9, no. 1. 2020, doi: 10.3390/plants9010088 [Google Scholar]
  29. A. Tribulato, S. Toscano, V. Di Lorenzo, and D. Romano, “Effects of water stress on gas exchange, water relations and leaf structure in two ornamental shrubs in the Mediterranean area,” Agronomy, Vol. 9, no. 7, 2019, doi: 10.3390/agronomy9070381 [CrossRef] [Google Scholar]
  30. O. A. M. Ali, “Wheat Responses and Tolerance to Drought Stress,” in Wheat Production in Changing Environments, 2019 [Google Scholar]
  31. F. Gharbi, A. Guizani, L. Zribi, H. Ben Ahmed, and F. Mouillot, “Differential response to water deficit stress and shade of two wheat (Triticum durum desf.) cultivars: Growth, water relations, osmolyte accumulation and photosynthetic pigments,” Pakistan J. Bot., Vol. 51, no. 4, 2019, doi: 10.30848/PJB2019-4(4) [Google Scholar]
  32. J. Rane et al., “Relative tolerance of photosystem ii in spike, leaf, and stem of bread and durum wheat under desiccation,” Photosynthetica, Vol. 57, no. 4, 2019, doi: 10.32615/ps.2019.111 [Google Scholar]
  33. T.I. Allahverdiyev, J.M. Talai, and I.M. Huseynova, “Adaptive changes in physiological traits of wheat genotypes under water deficit conditions,” Appl. Ecol. Environ. Res., Vol. 16, no. 1, 2018, doi: 10.15666/aeer/1601_791806 [CrossRef] [Google Scholar]
  34. I. Outoukarte, A. El Keroumi, A. Dihazi, and K. Naamani, “Use of Morpho-physiological Parameters and Biochemical Markers to Select Drought Tolerant Genotypes of Durum wheat,” J. Plant Stress Physiol., Vol. 5, pp. 01-07, 2019, doi: 10.25081/jpsp.2019.v5.3700 [Google Scholar]
  35. B.M. Olaolorun, H.A. Shimelis, I. Mathew, and M.D. Laing, “Optimising the dosage of ethyl methanesulphonate mutagenesis in selected wheat genotypes,” South African J. Plant Soil, Vol. 36, no. 5, 2019, doi: 10.1080/02571862.2019.1610808 [Google Scholar]
  36. R. Mangaiyarkarasi, M. Girija, and S. Gnanamurthy, “Mutagenic effectiveness and efficiency of gamma rays and ethyl methane sulphonate in Catharanthus roseus,” Int.J.Curr.Microbiol.App.Sci, Vol. 3, no. 5, pp. 881-889, 2014, [Online]. Available: http://www.ijcmas.com [Google Scholar]
  37. R.A. Satpute and R.V Fultambkar, “Effect of Mutagenesis on Germination , Survival and Pollen sterility in M 1 Generation of Soybean [ Glycine max ( L .) Merill ],” Int. J. Recent trends Sci. ad Technol., Vol. 2, no. 3, pp. 30-32, 2012 [Google Scholar]
  38. A. Sourour, “A review: Morphological, physiological, biochemical and molecular plant responses to water deficit stress,” Int. J. Eng. Sci., Vol. 06, no. 01, 2017, doi: 10.9790/1813-0601010104 [Google Scholar]
  39. A. Guendouz, N. Semcheddine, L. Moumeni, and M. Hafsi, “The Effect of Supplementary Irrigation on Leaf Area, Speci c Leaf Weight, Grain Yield and Water Use Ef ciency in Durum Wheat (Triticum durum Desf.) Cultivars,” Ekin J. Crop Breed. Genet., Vol. 2, no. 1, 2016 [Google Scholar]
  40. M. À. Conesa, C.D. Muir, A. Molins, and J. Galmés, “Stomatal anatomy coordinates leaf size with Rubisco kinetics in the Balearic Limonium,” AoB Plants, 2019, doi: 10.1093/aobpla/plz050 [Google Scholar]
  41. A. Blum, “Osmotic adjustment is a prime drought stress adaptive engine in support of plant production,” Plant Cell and Environment, Vol. 40, no. 1. 2017, doi: 10.1111/pce.12800 [CrossRef] [Google Scholar]
  42. Amanullah et al., “Organic Matter Management in Cereals Based System: Symbiosis for Improving Crop Productivity and Soil Health,” 2019 [Google Scholar]
  43. C.G. Chaib, G. Chaib, S. Merabta, M. Benlaribi, and N. Elmtili, “Markers of water stress in straw cereals (Triticum and Hordeum) at different phenological stages,” Moroccan J. Biol. Number, Vol. 1, no. 14, 2017, doi: 2351-8456 [Google Scholar]
  44. S. Keyvan, “The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars,” J. Anim. Plant Sci., Vol. 8, no. 3, pp. 1051-1060, 2010, [Online]. Available: http://www.biosciences.elewa.org/JAPS; [Google Scholar]
  45. M. Karimpour, “Effect of Drought Stress on RWC and ChlorophyllContent on Wheat (Triticum Durum L.) Genotypes,” World Essays J., Vol. 7, no. 1, pp. 52-56, 2019 [Google Scholar]
  46. S. Arraouadi, M. Badri, W. Taamalli, T. Huguet, and M.E. Aouani, “Variability salt stress response analysis of Tunisian natural populations of Medicago truncatula (Fabaceae) using salt response index (SRI) ratio,” African J. Biotechnol., Vol. 10, no. 52, 2011, doi: 10.5897/ajb10.1784 [Google Scholar]
  47. D. Sándor et al., “Effects of Water Deficit and Salt Stress on some Photosynthesis Parameters in Wheat and Aegilops Comosa Lines,” Acta Biol. Plant. Agriensis, Vol. 7, pp. 55-67, 2019, doi: .1037//0033-2909.I26.1.78 [Google Scholar]
  48. Y. Nadia, “Photosynthèse, activité photochimique et tolérance au déficit hydrique chez le blé dur (Tritcum durum Desf),” Mentouri Constantine, Algérie, 2001 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.